Skip to content

Latest commit

 

History

History
200 lines (169 loc) · 7.95 KB

06-Qwen-7B-chat 全量微调.md

File metadata and controls

200 lines (169 loc) · 7.95 KB

Qwen-7B-chat 全量微调

修改代码

首先我们要准训练模型的代码,这里我们使用的 modelscope 上的 Qwen-7B-chat 模型,大家自行下载即可。

OK,模型下载完毕之后,我们就要准备代码文件。其实全量微调和 Lora 微调的代码基本一样,都采用了 Trainer 类来进行训练。只不过在全量微调的时候没有加载 LoraConfig,那我就直接给出代码,如果对代有什么问题,大家可以先自行探索Qwen lora的代码解释,有什么不懂的地方可以提Issue

需要把代码中的模型地址修改一下,改成自己的模型地址。

from datasets import Dataset
import pandas as pd
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForSeq2Seq, TrainingArguments, HfArgumentParser, Trainer
import os
import torch
from dataclasses import dataclass, field
import deepspeed
deepspeed.ops.op_builder.CPUAdamBuilder().load()


@dataclass
class FinetuneArguments:
    # 微调参数
    # field:dataclass 函数,用于指定变量初始化
    model_path: str = field(default="../../model/qwen/Qwen-7B-Chat/")

# 用于处理数据集的函数
def process_func(example):
    MAX_LENGTH = 128    # Llama分词器会将一个中文字切分为多个token,因此需要放开一些最大长度,保证数据的完整性
    input_ids, attention_mask, labels = [], [], []
    instruction = tokenizer("\n".join(["<|im_start|>system", "现在你要扮演皇帝身边的女人--甄嬛.<|im_end|>" + "\n<|im_start|>user\n" + example["instruction"] + example["input"] + "<|im_end|>\n"]).strip(), add_special_tokens=False)  # add_special_tokens 不在开头加 special_tokens
    response = tokenizer("<|im_start|>assistant\n" + example["output"] + "<|im_end|>\n", add_special_tokens=False)
    input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id]
    attention_mask = instruction["attention_mask"] + response["attention_mask"] + [1]  # 因为eos token咱们也是要关注的所以 补充为1
    labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id]  # Qwen的特殊构造就是这样的
    if len(input_ids) > MAX_LENGTH:  # 做一个截断
        input_ids = input_ids[:MAX_LENGTH]
        attention_mask = attention_mask[:MAX_LENGTH]
        labels = labels[:MAX_LENGTH]
    return {
        "input_ids": input_ids,
        "attention_mask": attention_mask,
        "labels": labels
    }


if "__main__" == __name__:
    # 解析参数
    # Parse 命令行参数
    finetune_args, training_args = HfArgumentParser(
        (FinetuneArguments, TrainingArguments)
    ).parse_args_into_dataclasses()

    # 处理数据集
    # 将JSON文件转换为CSV文件
    df = pd.read_json('./data/huanhuan.json')
    ds = Dataset.from_pandas(df)
    # 加载tokenizer
    tokenizer = AutoTokenizer.from_pretrained(finetune_args.model_path, use_fast=False, trust_remote_code=True)
    tokenizer.pad_token_id = tokenizer.eod_id
    # 将数据集变化为token形式
    tokenized_id = ds.map(process_func, remove_columns=ds.column_names)

    # 创建模型并以半精度形式加载
    model = AutoModelForCausalLM.from_pretrained(finetune_args.model_path, trust_remote_code=True, torch_dtype=torch.half, device_map={"": int(os.environ.get("LOCAL_RANK") or 0)})
    
    # 使用trainer训练
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=tokenized_id,
        data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
        )
    trainer.train() # 开始训练
    response, history = model.chat(tokenizer, "你是谁", history=[], system="现在你要扮演皇帝身边的女人--甄嬛.")
    print(response)

DeepSpeed 环境配置

DeepSpeed 是微软开源的一个深度学习训练框架,可以用于分布式训练,同时还可以加速训练,减少显存占用。这里我们使用的是 DeepSpeed 的半精度训练,可以减少显存占用,加快训练速度。

首先我们需要安装 DeepSpeedDeepSpeed 的安装很简单,但如果没有按照如下步骤安装,可能会出现一些问题。

首先创建一个崭新的,干净的conda环境,注意一定要使用当前目录下提供的environment.yml文件来创建环境,否则可能会出现一些问题。接着激活环境,安装deepspeed,使用DS_BUILD_OPS=1来安装deepspeed,这样会避免后续的很多报错。

conda env create -n deepspeed -f environment.yml --force
conda activate deepspeed 
DS_BUILD_OPS=1 pip install deepspeed

然后就是安装transformers等其他依赖,注意不需要再安装torch了,在创建环境的时候torch已经安装了。

pip install modelscope==1.9.5
pip install transformers==4.35.2
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1
pip install datasets sentencepiece
pip install tiktoken
pip install transformers_stream_generator

注意:本环境是在aws服务器上安装并运行的,假如您在安装或者运行过程中遇到其他问题,欢迎提出issue,然后您解决之后,可以顺便提交PR,为项目添砖加瓦。

模型训练

首先创建deepspeedconfig.json文件。我使用的是stage-2的配置。如果不懂也没关系,直接粘贴复制,创建为ds_config.json文件即可。

{
    "fp16": {
        "enabled": "auto",
        "loss_scale": 0,
        "loss_scale_window": 1000,
        "initial_scale_power": 16,
        "hysteresis": 2,
        "min_loss_scale": 1
    },
    "optimizer": {
        "type": "AdamW",
        "params": {
            "lr": "auto",
            "betas": "auto",
            "eps": "auto",
            "weight_decay": "auto"
        }
    },

    "scheduler": {
        "type": "WarmupDecayLR",
        "params": {
            "last_batch_iteration": -1,
            "total_num_steps": "auto",
            "warmup_min_lr": "auto",
            "warmup_max_lr": "auto",
            "warmup_num_steps": "auto"
        }
    },

    "zero_optimization": {
        "stage": 2,
        "offload_optimizer": {
            "device": "cpu",
            "pin_memory": true
        },
        "offload_param": {
            "device": "cpu",
            "pin_memory": true
        },
        "allgather_partitions": true,
        "allgather_bucket_size": 5e8,
        "overlap_comm": true,
        "reduce_scatter": true,
        "reduce_bucket_size": 5e8,
        "contiguous_gradients": true
    },
    "activation_checkpointing": {
        "partition_activations": false,
        "cpu_checkpointing": false,
        "contiguous_memory_optimization": false,
        "number_checkpoints": null,
        "synchronize_checkpoint_boundary": false,
        "profile": false
    },
    "gradient_accumulation_steps": "auto",
    "gradient_clipping": "auto",
    "steps_per_print": 2000,
    "train_batch_size": "auto",
    "min_lr": 5e-7,
    "train_micro_batch_size_per_gpu": "auto",
    "wall_clock_breakdown": false
}

然后我们来创建运行所需的bash文,创建一个train.sh文件,内容如下:

num_gpus=4

deepspeed --num_gpus $num_gpus train.py \
    --deepspeed ./ds_config.json \
    --output_dir="./output/Qwen" \
    --per_device_train_batch_size=1 \
    --gradient_accumulation_steps=1 \
    --logging_steps=10 \
    --num_train_epochs=3 \
    --save_steps=100 \
    --learning_rate=1e-4 \
    --save_on_each_node=True \

接着在命令行输入:bash train.sh,开始训练。

注意:

  • 因为本脚本使用了adam_cpu来加载优化器参数,所以全量微调所需的显存会比较小,但仍然需要使用至少4张24G显存的卡来训练。
  • 如果第一步创建deepspeed环境时候,没有使用DS_BUILD_OPS=1,那么可能会出现一些问题,比如RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!,这个时候需要重新创建环境,然后再次运行。