Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

习题14.3 #55

Open
CSMsamuel opened this issue Mar 8, 2024 · 1 comment
Open

习题14.3 #55

CSMsamuel opened this issue Mar 8, 2024 · 1 comment

Comments

@CSMsamuel
Copy link

习题14.3中T(n,k) 指数生成函数表达式不是显然的。此部分是该题的实际核心所在,而展开生成函数反而是简明的。请补充该部分的细节。

@CSMsamuel
Copy link
Author

一个非生成的方法是这样的
第二类 Stirling 数 $S\left( n,k \right)$. 即将 n 个可区分小球放入 k 个不可区分盒子的方法数(不允许盒子为空).

我们记 $A_{i}=\left{ 第i个盒子为空 \right}$,则

$$
k!S\left( n,k \right)=\left| \bar{A}{1}\cap\cdots\cap \bar{A}{k} \right|=\left| S \right|-\left| A_{1}\cup\cdots\cup A_{k} \right|
$$

由于 $\left| A_{i_{1}}\cap A_{i_{2}}\cap\cdots\cap A_{i_{s}} \right|=\left( k-s \right)^{n}$,则由容斥原理即得

$$ \begin{aligned} k!S\left( n,k \right)&=k^{n}-\sum\limits_{i=1}^{k-1}\left( k-i \right)^{n}\binom{k}{i}\left( -1 \right)^{i-1}\\ &=\sum\limits_{i=0}^{k}\left( -1 \right)^{i}\binom{k}{i}\left( k-i \right)^{n}\\ &=\sum\limits_{i=0}^{k}\left( -1 \right)^{k-i}\binom{k}{i}i^{n} \end{aligned} $$

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant