-
Notifications
You must be signed in to change notification settings - Fork 154
/
Copy pathmnli_1e-5-32.log
1548 lines (1548 loc) · 125 KB
/
mnli_1e-5-32.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
INFO:root:Namespace(accumulate=None, batch_size=32, bert_dataset='openwebtext_ccnews_stories_books_cased', bert_model='roberta_12_768_12', dev_batch_size=8, dtype='float32', early_stop=2, epochs=10, epsilon=1e-06, gpu=1, log_interval=100, lr=1e-05, max_len=128, model_parameters=None, only_inference=False, output_dir='./output_dir', pad=False, pretrained_bert_parameters=None, seed=2, task_name='MNLI', warmup_ratio=0.06)
INFO:root:processing dataset...
INFO:root:Now we are doing BERT classification training on gpu(1)!
INFO:root:[Epoch 1 Batch 100/12276] loss=1.1039, lr=0.0000001, metrics:accuracy:0.3291
INFO:root:[Epoch 1 Batch 200/12276] loss=1.1012, lr=0.0000003, metrics:accuracy:0.3330
INFO:root:[Epoch 1 Batch 300/12276] loss=1.1005, lr=0.0000004, metrics:accuracy:0.3308
INFO:root:[Epoch 1 Batch 400/12276] loss=1.0980, lr=0.0000005, metrics:accuracy:0.3348
INFO:root:[Epoch 1 Batch 500/12276] loss=1.0981, lr=0.0000007, metrics:accuracy:0.3359
INFO:root:[Epoch 1 Batch 600/12276] loss=1.0958, lr=0.0000008, metrics:accuracy:0.3404
INFO:root:[Epoch 1 Batch 700/12276] loss=1.0821, lr=0.0000009, metrics:accuracy:0.3533
INFO:root:[Epoch 1 Batch 800/12276] loss=1.0386, lr=0.0000011, metrics:accuracy:0.3716
INFO:root:[Epoch 1 Batch 900/12276] loss=0.9773, lr=0.0000012, metrics:accuracy:0.3929
INFO:root:[Epoch 1 Batch 1000/12276] loss=0.9240, lr=0.0000014, metrics:accuracy:0.4135
INFO:root:[Epoch 1 Batch 1100/12276] loss=0.8182, lr=0.0000015, metrics:accuracy:0.4356
INFO:root:[Epoch 1 Batch 1200/12276] loss=0.7256, lr=0.0000016, metrics:accuracy:0.4573
INFO:root:[Epoch 1 Batch 1300/12276] loss=0.6907, lr=0.0000018, metrics:accuracy:0.4773
INFO:root:[Epoch 1 Batch 1400/12276] loss=0.6693, lr=0.0000019, metrics:accuracy:0.4950
INFO:root:[Epoch 1 Batch 1500/12276] loss=0.6349, lr=0.0000020, metrics:accuracy:0.5118
INFO:root:[Epoch 1 Batch 1600/12276] loss=0.6293, lr=0.0000022, metrics:accuracy:0.5263
INFO:root:[Epoch 1 Batch 1700/12276] loss=0.6123, lr=0.0000023, metrics:accuracy:0.5395
INFO:root:[Epoch 1 Batch 1800/12276] loss=0.6283, lr=0.0000024, metrics:accuracy:0.5510
INFO:root:[Epoch 1 Batch 1900/12276] loss=0.5676, lr=0.0000026, metrics:accuracy:0.5630
INFO:root:[Epoch 1 Batch 2000/12276] loss=0.5814, lr=0.0000027, metrics:accuracy:0.5737
INFO:root:[Epoch 1 Batch 2100/12276] loss=0.5815, lr=0.0000029, metrics:accuracy:0.5831
INFO:root:[Epoch 1 Batch 2200/12276] loss=0.5744, lr=0.0000030, metrics:accuracy:0.5917
INFO:root:[Epoch 1 Batch 2300/12276] loss=0.5658, lr=0.0000031, metrics:accuracy:0.5994
INFO:root:[Epoch 1 Batch 2400/12276] loss=0.5659, lr=0.0000033, metrics:accuracy:0.6064
INFO:root:[Epoch 1 Batch 2500/12276] loss=0.5626, lr=0.0000034, metrics:accuracy:0.6130
INFO:root:[Epoch 1 Batch 2600/12276] loss=0.5488, lr=0.0000035, metrics:accuracy:0.6197
INFO:root:[Epoch 1 Batch 2700/12276] loss=0.5517, lr=0.0000037, metrics:accuracy:0.6258
INFO:root:[Epoch 1 Batch 2800/12276] loss=0.5469, lr=0.0000038, metrics:accuracy:0.6317
INFO:root:[Epoch 1 Batch 2900/12276] loss=0.5323, lr=0.0000039, metrics:accuracy:0.6369
INFO:root:[Epoch 1 Batch 3000/12276] loss=0.5350, lr=0.0000041, metrics:accuracy:0.6418
INFO:root:[Epoch 1 Batch 3100/12276] loss=0.5232, lr=0.0000042, metrics:accuracy:0.6469
INFO:root:[Epoch 1 Batch 3200/12276] loss=0.5407, lr=0.0000043, metrics:accuracy:0.6511
INFO:root:[Epoch 1 Batch 3300/12276] loss=0.5536, lr=0.0000045, metrics:accuracy:0.6552
INFO:root:[Epoch 1 Batch 3400/12276] loss=0.4970, lr=0.0000046, metrics:accuracy:0.6598
INFO:root:[Epoch 1 Batch 3500/12276] loss=0.5200, lr=0.0000048, metrics:accuracy:0.6637
INFO:root:[Epoch 1 Batch 3600/12276] loss=0.5221, lr=0.0000049, metrics:accuracy:0.6674
INFO:root:[Epoch 1 Batch 3700/12276] loss=0.4897, lr=0.0000050, metrics:accuracy:0.6711
INFO:root:[Epoch 1 Batch 3800/12276] loss=0.5068, lr=0.0000052, metrics:accuracy:0.6746
INFO:root:[Epoch 1 Batch 3900/12276] loss=0.4994, lr=0.0000053, metrics:accuracy:0.6779
INFO:root:[Epoch 1 Batch 4000/12276] loss=0.4986, lr=0.0000054, metrics:accuracy:0.6811
INFO:root:[Epoch 1 Batch 4100/12276] loss=0.4893, lr=0.0000056, metrics:accuracy:0.6842
INFO:root:[Epoch 1 Batch 4200/12276] loss=0.5023, lr=0.0000057, metrics:accuracy:0.6871
INFO:root:[Epoch 1 Batch 4300/12276] loss=0.4717, lr=0.0000058, metrics:accuracy:0.6902
INFO:root:[Epoch 1 Batch 4400/12276] loss=0.5117, lr=0.0000060, metrics:accuracy:0.6927
INFO:root:[Epoch 1 Batch 4500/12276] loss=0.4813, lr=0.0000061, metrics:accuracy:0.6954
INFO:root:[Epoch 1 Batch 4600/12276] loss=0.5090, lr=0.0000062, metrics:accuracy:0.6978
INFO:root:[Epoch 1 Batch 4700/12276] loss=0.5112, lr=0.0000064, metrics:accuracy:0.6999
INFO:root:[Epoch 1 Batch 4800/12276] loss=0.4676, lr=0.0000065, metrics:accuracy:0.7024
INFO:root:[Epoch 1 Batch 4900/12276] loss=0.4764, lr=0.0000067, metrics:accuracy:0.7048
INFO:root:[Epoch 1 Batch 5000/12276] loss=0.4861, lr=0.0000068, metrics:accuracy:0.7069
INFO:root:[Epoch 1 Batch 5100/12276] loss=0.4812, lr=0.0000069, metrics:accuracy:0.7089
INFO:root:[Epoch 1 Batch 5200/12276] loss=0.4974, lr=0.0000071, metrics:accuracy:0.7108
INFO:root:[Epoch 1 Batch 5300/12276] loss=0.4728, lr=0.0000072, metrics:accuracy:0.7128
INFO:root:[Epoch 1 Batch 5400/12276] loss=0.4472, lr=0.0000073, metrics:accuracy:0.7148
INFO:root:[Epoch 1 Batch 5500/12276] loss=0.4800, lr=0.0000075, metrics:accuracy:0.7166
INFO:root:[Epoch 1 Batch 5600/12276] loss=0.4498, lr=0.0000076, metrics:accuracy:0.7185
INFO:root:[Epoch 1 Batch 5700/12276] loss=0.4731, lr=0.0000077, metrics:accuracy:0.7201
INFO:root:[Epoch 1 Batch 5800/12276] loss=0.4604, lr=0.0000079, metrics:accuracy:0.7220
INFO:root:[Epoch 1 Batch 5900/12276] loss=0.4744, lr=0.0000080, metrics:accuracy:0.7236
INFO:root:[Epoch 1 Batch 6000/12276] loss=0.4721, lr=0.0000081, metrics:accuracy:0.7252
INFO:root:[Epoch 1 Batch 6100/12276] loss=0.4368, lr=0.0000083, metrics:accuracy:0.7270
INFO:root:[Epoch 1 Batch 6200/12276] loss=0.4749, lr=0.0000084, metrics:accuracy:0.7284
INFO:root:[Epoch 1 Batch 6300/12276] loss=0.4409, lr=0.0000086, metrics:accuracy:0.7300
INFO:root:[Epoch 1 Batch 6400/12276] loss=0.4502, lr=0.0000087, metrics:accuracy:0.7316
INFO:root:[Epoch 1 Batch 6500/12276] loss=0.4902, lr=0.0000088, metrics:accuracy:0.7328
INFO:root:[Epoch 1 Batch 6600/12276] loss=0.4378, lr=0.0000090, metrics:accuracy:0.7342
INFO:root:[Epoch 1 Batch 6700/12276] loss=0.4382, lr=0.0000091, metrics:accuracy:0.7356
INFO:root:[Epoch 1 Batch 6800/12276] loss=0.4451, lr=0.0000092, metrics:accuracy:0.7370
INFO:root:[Epoch 1 Batch 6900/12276] loss=0.4456, lr=0.0000094, metrics:accuracy:0.7383
INFO:root:[Epoch 1 Batch 7000/12276] loss=0.4331, lr=0.0000095, metrics:accuracy:0.7397
INFO:root:[Epoch 1 Batch 7100/12276] loss=0.4591, lr=0.0000096, metrics:accuracy:0.7409
INFO:root:[Epoch 1 Batch 7200/12276] loss=0.4467, lr=0.0000098, metrics:accuracy:0.7422
INFO:root:[Epoch 1 Batch 7300/12276] loss=0.4373, lr=0.0000099, metrics:accuracy:0.7435
INFO:root:[Epoch 1 Batch 7400/12276] loss=0.4459, lr=0.0000100, metrics:accuracy:0.7446
INFO:root:[Epoch 1 Batch 7500/12276] loss=0.4277, lr=0.0000100, metrics:accuracy:0.7459
INFO:root:[Epoch 1 Batch 7600/12276] loss=0.4464, lr=0.0000100, metrics:accuracy:0.7470
INFO:root:[Epoch 1 Batch 7700/12276] loss=0.4371, lr=0.0000100, metrics:accuracy:0.7481
INFO:root:[Epoch 1 Batch 7800/12276] loss=0.4309, lr=0.0000100, metrics:accuracy:0.7492
INFO:root:[Epoch 1 Batch 7900/12276] loss=0.4617, lr=0.0000100, metrics:accuracy:0.7502
INFO:root:[Epoch 1 Batch 8000/12276] loss=0.4507, lr=0.0000099, metrics:accuracy:0.7511
INFO:root:[Epoch 1 Batch 8100/12276] loss=0.4604, lr=0.0000099, metrics:accuracy:0.7520
INFO:root:[Epoch 1 Batch 8200/12276] loss=0.4550, lr=0.0000099, metrics:accuracy:0.7530
INFO:root:[Epoch 1 Batch 8300/12276] loss=0.4407, lr=0.0000099, metrics:accuracy:0.7539
INFO:root:[Epoch 1 Batch 8400/12276] loss=0.4407, lr=0.0000099, metrics:accuracy:0.7548
INFO:root:[Epoch 1 Batch 8500/12276] loss=0.4221, lr=0.0000099, metrics:accuracy:0.7558
INFO:root:[Epoch 1 Batch 8600/12276] loss=0.4161, lr=0.0000099, metrics:accuracy:0.7569
INFO:root:[Epoch 1 Batch 8700/12276] loss=0.4299, lr=0.0000099, metrics:accuracy:0.7578
INFO:root:[Epoch 1 Batch 8800/12276] loss=0.4453, lr=0.0000099, metrics:accuracy:0.7586
INFO:root:[Epoch 1 Batch 8900/12276] loss=0.4388, lr=0.0000099, metrics:accuracy:0.7594
INFO:root:[Epoch 1 Batch 9000/12276] loss=0.4167, lr=0.0000099, metrics:accuracy:0.7602
INFO:root:[Epoch 1 Batch 9100/12276] loss=0.4537, lr=0.0000098, metrics:accuracy:0.7610
INFO:root:[Epoch 1 Batch 9200/12276] loss=0.4285, lr=0.0000098, metrics:accuracy:0.7618
INFO:root:[Epoch 1 Batch 9300/12276] loss=0.4278, lr=0.0000098, metrics:accuracy:0.7626
INFO:root:[Epoch 1 Batch 9400/12276] loss=0.4295, lr=0.0000098, metrics:accuracy:0.7633
INFO:root:[Epoch 1 Batch 9500/12276] loss=0.4236, lr=0.0000098, metrics:accuracy:0.7642
INFO:root:[Epoch 1 Batch 9600/12276] loss=0.4172, lr=0.0000098, metrics:accuracy:0.7649
INFO:root:[Epoch 1 Batch 9700/12276] loss=0.4341, lr=0.0000098, metrics:accuracy:0.7656
INFO:root:[Epoch 1 Batch 9800/12276] loss=0.4149, lr=0.0000098, metrics:accuracy:0.7664
INFO:root:[Epoch 1 Batch 9900/12276] loss=0.4204, lr=0.0000098, metrics:accuracy:0.7671
INFO:root:[Epoch 1 Batch 10000/12276] loss=0.4319, lr=0.0000098, metrics:accuracy:0.7678
INFO:root:[Epoch 1 Batch 10100/12276] loss=0.4398, lr=0.0000098, metrics:accuracy:0.7685
INFO:root:[Epoch 1 Batch 10200/12276] loss=0.4171, lr=0.0000098, metrics:accuracy:0.7692
INFO:root:[Epoch 1 Batch 10300/12276] loss=0.4410, lr=0.0000097, metrics:accuracy:0.7698
INFO:root:[Epoch 1 Batch 10400/12276] loss=0.4342, lr=0.0000097, metrics:accuracy:0.7703
INFO:root:[Epoch 1 Batch 10500/12276] loss=0.3955, lr=0.0000097, metrics:accuracy:0.7711
INFO:root:[Epoch 1 Batch 10600/12276] loss=0.4218, lr=0.0000097, metrics:accuracy:0.7717
INFO:root:[Epoch 1 Batch 10700/12276] loss=0.4237, lr=0.0000097, metrics:accuracy:0.7723
INFO:root:[Epoch 1 Batch 10800/12276] loss=0.4469, lr=0.0000097, metrics:accuracy:0.7729
INFO:root:[Epoch 1 Batch 10900/12276] loss=0.3999, lr=0.0000097, metrics:accuracy:0.7736
INFO:root:[Epoch 1 Batch 11000/12276] loss=0.4282, lr=0.0000097, metrics:accuracy:0.7742
INFO:root:[Epoch 1 Batch 11100/12276] loss=0.4364, lr=0.0000097, metrics:accuracy:0.7747
INFO:root:[Epoch 1 Batch 11200/12276] loss=0.4268, lr=0.0000097, metrics:accuracy:0.7753
INFO:root:[Epoch 1 Batch 11300/12276] loss=0.4296, lr=0.0000097, metrics:accuracy:0.7757
INFO:root:[Epoch 1 Batch 11400/12276] loss=0.4174, lr=0.0000097, metrics:accuracy:0.7763
INFO:root:[Epoch 1 Batch 11500/12276] loss=0.4384, lr=0.0000096, metrics:accuracy:0.7768
INFO:root:[Epoch 1 Batch 11600/12276] loss=0.4159, lr=0.0000096, metrics:accuracy:0.7774
INFO:root:[Epoch 1 Batch 11700/12276] loss=0.4158, lr=0.0000096, metrics:accuracy:0.7779
INFO:root:[Epoch 1 Batch 11800/12276] loss=0.4184, lr=0.0000096, metrics:accuracy:0.7784
INFO:root:[Epoch 1 Batch 11900/12276] loss=0.3994, lr=0.0000096, metrics:accuracy:0.7790
INFO:root:[Epoch 1 Batch 12000/12276] loss=0.4095, lr=0.0000096, metrics:accuracy:0.7795
INFO:root:[Epoch 1 Batch 12100/12276] loss=0.4102, lr=0.0000096, metrics:accuracy:0.7800
INFO:root:[Epoch 1 Batch 12200/12276] loss=0.4239, lr=0.0000096, metrics:accuracy:0.7805
INFO:root:Now we are doing evaluation on dev_matched with gpu(1).
INFO:root:[Batch 100/1227] loss=0.3688, metrics:accuracy:0.8488
INFO:root:[Batch 200/1227] loss=0.3771, metrics:accuracy:0.8494
INFO:root:[Batch 300/1227] loss=0.3672, metrics:accuracy:0.8492
INFO:root:[Batch 400/1227] loss=0.3620, metrics:accuracy:0.8541
INFO:root:[Batch 500/1227] loss=0.4019, metrics:accuracy:0.8515
INFO:root:[Batch 600/1227] loss=0.3577, metrics:accuracy:0.8529
INFO:root:[Batch 700/1227] loss=0.3836, metrics:accuracy:0.8521
INFO:root:[Batch 800/1227] loss=0.3567, metrics:accuracy:0.8531
INFO:root:[Batch 900/1227] loss=0.3763, metrics:accuracy:0.8524
INFO:root:[Batch 1000/1227] loss=0.4307, metrics:accuracy:0.8502
INFO:root:[Batch 1100/1227] loss=0.4051, metrics:accuracy:0.8493
INFO:root:[Batch 1200/1227] loss=0.3847, metrics:accuracy:0.8490
INFO:root:validation metrics:accuracy:0.8493
INFO:root:Time cost=29.24s, throughput=335.69 samples/s
INFO:root:Now we are doing evaluation on dev_mismatched with gpu(1).
INFO:root:[Batch 100/1229] loss=0.3697, metrics:accuracy:0.8650
INFO:root:[Batch 200/1229] loss=0.3680, metrics:accuracy:0.8612
INFO:root:[Batch 300/1229] loss=0.3427, metrics:accuracy:0.8629
INFO:root:[Batch 400/1229] loss=0.3698, metrics:accuracy:0.8609
INFO:root:[Batch 500/1229] loss=0.3766, metrics:accuracy:0.8580
INFO:root:[Batch 600/1229] loss=0.3354, metrics:accuracy:0.8617
INFO:root:[Batch 700/1229] loss=0.3854, metrics:accuracy:0.8604
INFO:root:[Batch 800/1229] loss=0.3645, metrics:accuracy:0.8591
INFO:root:[Batch 900/1229] loss=0.3898, metrics:accuracy:0.8575
INFO:root:[Batch 1000/1229] loss=0.3571, metrics:accuracy:0.8591
INFO:root:[Batch 1100/1229] loss=0.4014, metrics:accuracy:0.8592
INFO:root:[Batch 1200/1229] loss=0.3778, metrics:accuracy:0.8586
INFO:root:validation metrics:accuracy:0.8590
INFO:root:Time cost=28.82s, throughput=341.15 samples/s
INFO:root:params saved in: ./output_dir/model_bert_MNLI_0.params
INFO:root:Time cost=1893.16s
INFO:root:[Epoch 2 Batch 100/12276] loss=0.3709, lr=0.0000096, metrics:accuracy:0.8591
INFO:root:[Epoch 2 Batch 200/12276] loss=0.3655, lr=0.0000096, metrics:accuracy:0.8609
INFO:root:[Epoch 2 Batch 300/12276] loss=0.3820, lr=0.0000095, metrics:accuracy:0.8588
INFO:root:[Epoch 2 Batch 400/12276] loss=0.3815, lr=0.0000095, metrics:accuracy:0.8584
INFO:root:[Epoch 2 Batch 500/12276] loss=0.3783, lr=0.0000095, metrics:accuracy:0.8589
INFO:root:[Epoch 2 Batch 600/12276] loss=0.3787, lr=0.0000095, metrics:accuracy:0.8586
INFO:root:[Epoch 2 Batch 700/12276] loss=0.3625, lr=0.0000095, metrics:accuracy:0.8599
INFO:root:[Epoch 2 Batch 800/12276] loss=0.3625, lr=0.0000095, metrics:accuracy:0.8610
INFO:root:[Epoch 2 Batch 900/12276] loss=0.3586, lr=0.0000095, metrics:accuracy:0.8618
INFO:root:[Epoch 2 Batch 1000/12276] loss=0.3607, lr=0.0000095, metrics:accuracy:0.8618
INFO:root:[Epoch 2 Batch 1100/12276] loss=0.3851, lr=0.0000095, metrics:accuracy:0.8618
INFO:root:[Epoch 2 Batch 1200/12276] loss=0.3621, lr=0.0000095, metrics:accuracy:0.8619
INFO:root:[Epoch 2 Batch 1300/12276] loss=0.3662, lr=0.0000095, metrics:accuracy:0.8621
INFO:root:[Epoch 2 Batch 1400/12276] loss=0.3744, lr=0.0000095, metrics:accuracy:0.8619
INFO:root:[Epoch 2 Batch 1500/12276] loss=0.3521, lr=0.0000094, metrics:accuracy:0.8626
INFO:root:[Epoch 2 Batch 1600/12276] loss=0.3788, lr=0.0000094, metrics:accuracy:0.8625
INFO:root:[Epoch 2 Batch 1700/12276] loss=0.3721, lr=0.0000094, metrics:accuracy:0.8624
INFO:root:[Epoch 2 Batch 1800/12276] loss=0.3871, lr=0.0000094, metrics:accuracy:0.8617
INFO:root:[Epoch 2 Batch 1900/12276] loss=0.3685, lr=0.0000094, metrics:accuracy:0.8618
INFO:root:[Epoch 2 Batch 2000/12276] loss=0.3705, lr=0.0000094, metrics:accuracy:0.8618
INFO:root:[Epoch 2 Batch 2100/12276] loss=0.3677, lr=0.0000094, metrics:accuracy:0.8618
INFO:root:[Epoch 2 Batch 2200/12276] loss=0.3789, lr=0.0000094, metrics:accuracy:0.8614
INFO:root:[Epoch 2 Batch 2300/12276] loss=0.3630, lr=0.0000094, metrics:accuracy:0.8616
INFO:root:[Epoch 2 Batch 2400/12276] loss=0.3740, lr=0.0000094, metrics:accuracy:0.8615
INFO:root:[Epoch 2 Batch 2500/12276] loss=0.3796, lr=0.0000094, metrics:accuracy:0.8613
INFO:root:[Epoch 2 Batch 2600/12276] loss=0.3706, lr=0.0000093, metrics:accuracy:0.8612
INFO:root:[Epoch 2 Batch 2700/12276] loss=0.3725, lr=0.0000093, metrics:accuracy:0.8612
INFO:root:[Epoch 2 Batch 2800/12276] loss=0.3485, lr=0.0000093, metrics:accuracy:0.8614
INFO:root:[Epoch 2 Batch 2900/12276] loss=0.3472, lr=0.0000093, metrics:accuracy:0.8618
INFO:root:[Epoch 2 Batch 3000/12276] loss=0.3516, lr=0.0000093, metrics:accuracy:0.8621
INFO:root:[Epoch 2 Batch 3100/12276] loss=0.3697, lr=0.0000093, metrics:accuracy:0.8620
INFO:root:[Epoch 2 Batch 3200/12276] loss=0.3855, lr=0.0000093, metrics:accuracy:0.8619
INFO:root:[Epoch 2 Batch 3300/12276] loss=0.3818, lr=0.0000093, metrics:accuracy:0.8617
INFO:root:[Epoch 2 Batch 3400/12276] loss=0.3461, lr=0.0000093, metrics:accuracy:0.8620
INFO:root:[Epoch 2 Batch 3500/12276] loss=0.3447, lr=0.0000093, metrics:accuracy:0.8624
INFO:root:[Epoch 2 Batch 3600/12276] loss=0.3545, lr=0.0000093, metrics:accuracy:0.8627
INFO:root:[Epoch 2 Batch 3700/12276] loss=0.3412, lr=0.0000093, metrics:accuracy:0.8629
INFO:root:[Epoch 2 Batch 3800/12276] loss=0.3631, lr=0.0000092, metrics:accuracy:0.8630
INFO:root:[Epoch 2 Batch 3900/12276] loss=0.3804, lr=0.0000092, metrics:accuracy:0.8627
INFO:root:[Epoch 2 Batch 4000/12276] loss=0.3667, lr=0.0000092, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 4100/12276] loss=0.3690, lr=0.0000092, metrics:accuracy:0.8626
INFO:root:[Epoch 2 Batch 4200/12276] loss=0.3557, lr=0.0000092, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 4300/12276] loss=0.3729, lr=0.0000092, metrics:accuracy:0.8626
INFO:root:[Epoch 2 Batch 4400/12276] loss=0.3671, lr=0.0000092, metrics:accuracy:0.8625
INFO:root:[Epoch 2 Batch 4500/12276] loss=0.3577, lr=0.0000092, metrics:accuracy:0.8626
INFO:root:[Epoch 2 Batch 4600/12276] loss=0.3662, lr=0.0000092, metrics:accuracy:0.8625
INFO:root:[Epoch 2 Batch 4700/12276] loss=0.3553, lr=0.0000092, metrics:accuracy:0.8626
INFO:root:[Epoch 2 Batch 4800/12276] loss=0.3418, lr=0.0000092, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 4900/12276] loss=0.3878, lr=0.0000091, metrics:accuracy:0.8626
INFO:root:[Epoch 2 Batch 5000/12276] loss=0.3588, lr=0.0000091, metrics:accuracy:0.8626
INFO:root:[Epoch 2 Batch 5100/12276] loss=0.3577, lr=0.0000091, metrics:accuracy:0.8625
INFO:root:[Epoch 2 Batch 5200/12276] loss=0.3558, lr=0.0000091, metrics:accuracy:0.8626
INFO:root:[Epoch 2 Batch 5300/12276] loss=0.3498, lr=0.0000091, metrics:accuracy:0.8627
INFO:root:[Epoch 2 Batch 5400/12276] loss=0.3774, lr=0.0000091, metrics:accuracy:0.8627
INFO:root:[Epoch 2 Batch 5500/12276] loss=0.3519, lr=0.0000091, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 5600/12276] loss=0.3807, lr=0.0000091, metrics:accuracy:0.8626
INFO:root:[Epoch 2 Batch 5700/12276] loss=0.3395, lr=0.0000091, metrics:accuracy:0.8627
INFO:root:[Epoch 2 Batch 5800/12276] loss=0.3560, lr=0.0000091, metrics:accuracy:0.8627
INFO:root:[Epoch 2 Batch 5900/12276] loss=0.3565, lr=0.0000091, metrics:accuracy:0.8627
INFO:root:[Epoch 2 Batch 6000/12276] loss=0.3682, lr=0.0000091, metrics:accuracy:0.8627
INFO:root:[Epoch 2 Batch 6100/12276] loss=0.3618, lr=0.0000090, metrics:accuracy:0.8627
INFO:root:[Epoch 2 Batch 6200/12276] loss=0.3410, lr=0.0000090, metrics:accuracy:0.8629
INFO:root:[Epoch 2 Batch 6300/12276] loss=0.3646, lr=0.0000090, metrics:accuracy:0.8629
INFO:root:[Epoch 2 Batch 6400/12276] loss=0.3624, lr=0.0000090, metrics:accuracy:0.8629
INFO:root:[Epoch 2 Batch 6500/12276] loss=0.3765, lr=0.0000090, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 6600/12276] loss=0.3516, lr=0.0000090, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 6700/12276] loss=0.3482, lr=0.0000090, metrics:accuracy:0.8630
INFO:root:[Epoch 2 Batch 6800/12276] loss=0.3683, lr=0.0000090, metrics:accuracy:0.8630
INFO:root:[Epoch 2 Batch 6900/12276] loss=0.3896, lr=0.0000090, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 7000/12276] loss=0.3540, lr=0.0000090, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 7100/12276] loss=0.3543, lr=0.0000090, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 7200/12276] loss=0.3738, lr=0.0000090, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 7300/12276] loss=0.3404, lr=0.0000089, metrics:accuracy:0.8630
INFO:root:[Epoch 2 Batch 7400/12276] loss=0.3727, lr=0.0000089, metrics:accuracy:0.8629
INFO:root:[Epoch 2 Batch 7500/12276] loss=0.3471, lr=0.0000089, metrics:accuracy:0.8631
INFO:root:[Epoch 2 Batch 7600/12276] loss=0.3817, lr=0.0000089, metrics:accuracy:0.8630
INFO:root:[Epoch 2 Batch 7700/12276] loss=0.3802, lr=0.0000089, metrics:accuracy:0.8630
INFO:root:[Epoch 2 Batch 7800/12276] loss=0.3699, lr=0.0000089, metrics:accuracy:0.8629
INFO:root:[Epoch 2 Batch 7900/12276] loss=0.3811, lr=0.0000089, metrics:accuracy:0.8627
INFO:root:[Epoch 2 Batch 8000/12276] loss=0.3582, lr=0.0000089, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 8100/12276] loss=0.3673, lr=0.0000089, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 8200/12276] loss=0.3734, lr=0.0000089, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 8300/12276] loss=0.3527, lr=0.0000089, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 8400/12276] loss=0.3424, lr=0.0000088, metrics:accuracy:0.8629
INFO:root:[Epoch 2 Batch 8500/12276] loss=0.3587, lr=0.0000088, metrics:accuracy:0.8629
INFO:root:[Epoch 2 Batch 8600/12276] loss=0.3786, lr=0.0000088, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 8700/12276] loss=0.3336, lr=0.0000088, metrics:accuracy:0.8629
INFO:root:[Epoch 2 Batch 8800/12276] loss=0.3401, lr=0.0000088, metrics:accuracy:0.8630
INFO:root:[Epoch 2 Batch 8900/12276] loss=0.3720, lr=0.0000088, metrics:accuracy:0.8630
INFO:root:[Epoch 2 Batch 9000/12276] loss=0.3604, lr=0.0000088, metrics:accuracy:0.8630
INFO:root:[Epoch 2 Batch 9100/12276] loss=0.3653, lr=0.0000088, metrics:accuracy:0.8629
INFO:root:[Epoch 2 Batch 9200/12276] loss=0.3464, lr=0.0000088, metrics:accuracy:0.8630
INFO:root:[Epoch 2 Batch 9300/12276] loss=0.3604, lr=0.0000088, metrics:accuracy:0.8630
INFO:root:[Epoch 2 Batch 9400/12276] loss=0.3430, lr=0.0000088, metrics:accuracy:0.8631
INFO:root:[Epoch 2 Batch 9500/12276] loss=0.3504, lr=0.0000088, metrics:accuracy:0.8631
INFO:root:[Epoch 2 Batch 9600/12276] loss=0.3573, lr=0.0000087, metrics:accuracy:0.8631
INFO:root:[Epoch 2 Batch 9700/12276] loss=0.3592, lr=0.0000087, metrics:accuracy:0.8631
INFO:root:[Epoch 2 Batch 9800/12276] loss=0.3592, lr=0.0000087, metrics:accuracy:0.8631
INFO:root:[Epoch 2 Batch 9900/12276] loss=0.3502, lr=0.0000087, metrics:accuracy:0.8632
INFO:root:[Epoch 2 Batch 10000/12276] loss=0.3503, lr=0.0000087, metrics:accuracy:0.8632
INFO:root:[Epoch 2 Batch 10100/12276] loss=0.3532, lr=0.0000087, metrics:accuracy:0.8632
INFO:root:[Epoch 2 Batch 10200/12276] loss=0.3580, lr=0.0000087, metrics:accuracy:0.8632
INFO:root:[Epoch 2 Batch 10300/12276] loss=0.3729, lr=0.0000087, metrics:accuracy:0.8632
INFO:root:[Epoch 2 Batch 10400/12276] loss=0.3541, lr=0.0000087, metrics:accuracy:0.8633
INFO:root:[Epoch 2 Batch 10500/12276] loss=0.3752, lr=0.0000087, metrics:accuracy:0.8632
INFO:root:[Epoch 2 Batch 10600/12276] loss=0.3544, lr=0.0000087, metrics:accuracy:0.8633
INFO:root:[Epoch 2 Batch 10700/12276] loss=0.3697, lr=0.0000086, metrics:accuracy:0.8633
INFO:root:[Epoch 2 Batch 10800/12276] loss=0.3535, lr=0.0000086, metrics:accuracy:0.8633
INFO:root:[Epoch 2 Batch 10900/12276] loss=0.3475, lr=0.0000086, metrics:accuracy:0.8633
INFO:root:[Epoch 2 Batch 11000/12276] loss=0.3526, lr=0.0000086, metrics:accuracy:0.8633
INFO:root:[Epoch 2 Batch 11100/12276] loss=0.3675, lr=0.0000086, metrics:accuracy:0.8634
INFO:root:[Epoch 2 Batch 11200/12276] loss=0.3598, lr=0.0000086, metrics:accuracy:0.8634
INFO:root:[Epoch 2 Batch 11300/12276] loss=0.3446, lr=0.0000086, metrics:accuracy:0.8634
INFO:root:[Epoch 2 Batch 11400/12276] loss=0.3358, lr=0.0000086, metrics:accuracy:0.8635
INFO:root:[Epoch 2 Batch 11500/12276] loss=0.3629, lr=0.0000086, metrics:accuracy:0.8635
INFO:root:[Epoch 2 Batch 11600/12276] loss=0.3476, lr=0.0000086, metrics:accuracy:0.8635
INFO:root:[Epoch 2 Batch 11700/12276] loss=0.3636, lr=0.0000086, metrics:accuracy:0.8635
INFO:root:[Epoch 2 Batch 11800/12276] loss=0.3436, lr=0.0000086, metrics:accuracy:0.8635
INFO:root:[Epoch 2 Batch 11900/12276] loss=0.3557, lr=0.0000085, metrics:accuracy:0.8636
INFO:root:[Epoch 2 Batch 12000/12276] loss=0.3532, lr=0.0000085, metrics:accuracy:0.8636
INFO:root:[Epoch 2 Batch 12100/12276] loss=0.3424, lr=0.0000085, metrics:accuracy:0.8637
INFO:root:[Epoch 2 Batch 12200/12276] loss=0.3549, lr=0.0000085, metrics:accuracy:0.8637
INFO:root:Now we are doing evaluation on dev_matched with gpu(1).
INFO:root:[Batch 100/1227] loss=0.3512, metrics:accuracy:0.8650
INFO:root:[Batch 200/1227] loss=0.3524, metrics:accuracy:0.8694
INFO:root:[Batch 300/1227] loss=0.3682, metrics:accuracy:0.8667
INFO:root:[Batch 400/1227] loss=0.3543, metrics:accuracy:0.8703
INFO:root:[Batch 500/1227] loss=0.3803, metrics:accuracy:0.8702
INFO:root:[Batch 600/1227] loss=0.3181, metrics:accuracy:0.8725
INFO:root:[Batch 700/1227] loss=0.3654, metrics:accuracy:0.8705
INFO:root:[Batch 800/1227] loss=0.3277, metrics:accuracy:0.8723
INFO:root:[Batch 900/1227] loss=0.3540, metrics:accuracy:0.8718
INFO:root:[Batch 1000/1227] loss=0.4164, metrics:accuracy:0.8685
INFO:root:[Batch 1100/1227] loss=0.4181, metrics:accuracy:0.8668
INFO:root:[Batch 1200/1227] loss=0.3798, metrics:accuracy:0.8657
INFO:root:validation metrics:accuracy:0.8661
INFO:root:Time cost=27.41s, throughput=358.09 samples/s
INFO:root:Now we are doing evaluation on dev_mismatched with gpu(1).
INFO:root:[Batch 100/1229] loss=0.3907, metrics:accuracy:0.8612
INFO:root:[Batch 200/1229] loss=0.3732, metrics:accuracy:0.8619
INFO:root:[Batch 300/1229] loss=0.3392, metrics:accuracy:0.8667
INFO:root:[Batch 400/1229] loss=0.3457, metrics:accuracy:0.8688
INFO:root:[Batch 500/1229] loss=0.3865, metrics:accuracy:0.8670
INFO:root:[Batch 600/1229] loss=0.3137, metrics:accuracy:0.8698
INFO:root:[Batch 700/1229] loss=0.3835, metrics:accuracy:0.8693
INFO:root:[Batch 800/1229] loss=0.3771, metrics:accuracy:0.8670
INFO:root:[Batch 900/1229] loss=0.3721, metrics:accuracy:0.8669
INFO:root:[Batch 1000/1229] loss=0.3333, metrics:accuracy:0.8681
INFO:root:[Batch 1100/1229] loss=0.3743, metrics:accuracy:0.8691
INFO:root:[Batch 1200/1229] loss=0.3776, metrics:accuracy:0.8678
INFO:root:validation metrics:accuracy:0.8680
INFO:root:Time cost=26.99s, throughput=364.27 samples/s
INFO:root:params saved in: ./output_dir/model_bert_MNLI_1.params
INFO:root:Time cost=1872.61s
INFO:root:[Epoch 3 Batch 100/12276] loss=0.3111, lr=0.0000085, metrics:accuracy:0.8865
INFO:root:[Epoch 3 Batch 200/12276] loss=0.2654, lr=0.0000085, metrics:accuracy:0.8914
INFO:root:[Epoch 3 Batch 300/12276] loss=0.2889, lr=0.0000085, metrics:accuracy:0.8934
INFO:root:[Epoch 3 Batch 400/12276] loss=0.3136, lr=0.0000085, metrics:accuracy:0.8909
INFO:root:[Epoch 3 Batch 500/12276] loss=0.2983, lr=0.0000085, metrics:accuracy:0.8902
INFO:root:[Epoch 3 Batch 600/12276] loss=0.2799, lr=0.0000085, metrics:accuracy:0.8912
INFO:root:[Epoch 3 Batch 700/12276] loss=0.2965, lr=0.0000084, metrics:accuracy:0.8907
INFO:root:[Epoch 3 Batch 800/12276] loss=0.2841, lr=0.0000084, metrics:accuracy:0.8917
INFO:root:[Epoch 3 Batch 900/12276] loss=0.3058, lr=0.0000084, metrics:accuracy:0.8909
INFO:root:[Epoch 3 Batch 1000/12276] loss=0.3036, lr=0.0000084, metrics:accuracy:0.8898
INFO:root:[Epoch 3 Batch 1100/12276] loss=0.3034, lr=0.0000084, metrics:accuracy:0.8897
INFO:root:[Epoch 3 Batch 1200/12276] loss=0.3093, lr=0.0000084, metrics:accuracy:0.8892
INFO:root:[Epoch 3 Batch 1300/12276] loss=0.2994, lr=0.0000084, metrics:accuracy:0.8896
INFO:root:[Epoch 3 Batch 1400/12276] loss=0.2955, lr=0.0000084, metrics:accuracy:0.8899
INFO:root:[Epoch 3 Batch 1500/12276] loss=0.2907, lr=0.0000084, metrics:accuracy:0.8896
INFO:root:[Epoch 3 Batch 1600/12276] loss=0.2800, lr=0.0000084, metrics:accuracy:0.8904
INFO:root:[Epoch 3 Batch 1700/12276] loss=0.3013, lr=0.0000084, metrics:accuracy:0.8905
INFO:root:[Epoch 3 Batch 1800/12276] loss=0.2903, lr=0.0000084, metrics:accuracy:0.8904
INFO:root:[Epoch 3 Batch 1900/12276] loss=0.2820, lr=0.0000083, metrics:accuracy:0.8909
INFO:root:[Epoch 3 Batch 2000/12276] loss=0.3083, lr=0.0000083, metrics:accuracy:0.8905
INFO:root:[Epoch 3 Batch 2100/12276] loss=0.2982, lr=0.0000083, metrics:accuracy:0.8904
INFO:root:[Epoch 3 Batch 2200/12276] loss=0.3049, lr=0.0000083, metrics:accuracy:0.8903
INFO:root:[Epoch 3 Batch 2300/12276] loss=0.3000, lr=0.0000083, metrics:accuracy:0.8901
INFO:root:[Epoch 3 Batch 2400/12276] loss=0.2872, lr=0.0000083, metrics:accuracy:0.8900
INFO:root:[Epoch 3 Batch 2500/12276] loss=0.2848, lr=0.0000083, metrics:accuracy:0.8902
INFO:root:[Epoch 3 Batch 2600/12276] loss=0.3328, lr=0.0000083, metrics:accuracy:0.8899
INFO:root:[Epoch 3 Batch 2700/12276] loss=0.3029, lr=0.0000083, metrics:accuracy:0.8897
INFO:root:[Epoch 3 Batch 2800/12276] loss=0.3289, lr=0.0000083, metrics:accuracy:0.8892
INFO:root:[Epoch 3 Batch 2900/12276] loss=0.3013, lr=0.0000083, metrics:accuracy:0.8890
INFO:root:[Epoch 3 Batch 3000/12276] loss=0.2855, lr=0.0000082, metrics:accuracy:0.8891
INFO:root:[Epoch 3 Batch 3100/12276] loss=0.2952, lr=0.0000082, metrics:accuracy:0.8893
INFO:root:[Epoch 3 Batch 3200/12276] loss=0.2977, lr=0.0000082, metrics:accuracy:0.8892
INFO:root:[Epoch 3 Batch 3300/12276] loss=0.2829, lr=0.0000082, metrics:accuracy:0.8893
INFO:root:[Epoch 3 Batch 3400/12276] loss=0.2756, lr=0.0000082, metrics:accuracy:0.8897
INFO:root:[Epoch 3 Batch 3500/12276] loss=0.2760, lr=0.0000082, metrics:accuracy:0.8898
INFO:root:[Epoch 3 Batch 3600/12276] loss=0.3029, lr=0.0000082, metrics:accuracy:0.8897
INFO:root:[Epoch 3 Batch 3700/12276] loss=0.2953, lr=0.0000082, metrics:accuracy:0.8898
INFO:root:[Epoch 3 Batch 3800/12276] loss=0.2814, lr=0.0000082, metrics:accuracy:0.8899
INFO:root:[Epoch 3 Batch 3900/12276] loss=0.2910, lr=0.0000082, metrics:accuracy:0.8899
INFO:root:[Epoch 3 Batch 4000/12276] loss=0.3027, lr=0.0000082, metrics:accuracy:0.8898
INFO:root:[Epoch 3 Batch 4100/12276] loss=0.3108, lr=0.0000082, metrics:accuracy:0.8898
INFO:root:[Epoch 3 Batch 4200/12276] loss=0.2961, lr=0.0000081, metrics:accuracy:0.8898
INFO:root:[Epoch 3 Batch 4300/12276] loss=0.2988, lr=0.0000081, metrics:accuracy:0.8899
INFO:root:[Epoch 3 Batch 4400/12276] loss=0.2937, lr=0.0000081, metrics:accuracy:0.8900
INFO:root:[Epoch 3 Batch 4500/12276] loss=0.3092, lr=0.0000081, metrics:accuracy:0.8900
INFO:root:[Epoch 3 Batch 4600/12276] loss=0.2870, lr=0.0000081, metrics:accuracy:0.8900
INFO:root:[Epoch 3 Batch 4700/12276] loss=0.2933, lr=0.0000081, metrics:accuracy:0.8901
INFO:root:[Epoch 3 Batch 4800/12276] loss=0.2788, lr=0.0000081, metrics:accuracy:0.8904
INFO:root:[Epoch 3 Batch 4900/12276] loss=0.3017, lr=0.0000081, metrics:accuracy:0.8903
INFO:root:[Epoch 3 Batch 5000/12276] loss=0.2933, lr=0.0000081, metrics:accuracy:0.8904
INFO:root:[Epoch 3 Batch 5100/12276] loss=0.3230, lr=0.0000081, metrics:accuracy:0.8902
INFO:root:[Epoch 3 Batch 5200/12276] loss=0.2933, lr=0.0000081, metrics:accuracy:0.8901
INFO:root:[Epoch 3 Batch 5300/12276] loss=0.2785, lr=0.0000081, metrics:accuracy:0.8902
INFO:root:[Epoch 3 Batch 5400/12276] loss=0.2983, lr=0.0000080, metrics:accuracy:0.8903
INFO:root:[Epoch 3 Batch 5500/12276] loss=0.3015, lr=0.0000080, metrics:accuracy:0.8903
INFO:root:[Epoch 3 Batch 5600/12276] loss=0.2836, lr=0.0000080, metrics:accuracy:0.8903
INFO:root:[Epoch 3 Batch 5700/12276] loss=0.2963, lr=0.0000080, metrics:accuracy:0.8904
INFO:root:[Epoch 3 Batch 5800/12276] loss=0.3030, lr=0.0000080, metrics:accuracy:0.8904
INFO:root:[Epoch 3 Batch 5900/12276] loss=0.2773, lr=0.0000080, metrics:accuracy:0.8904
INFO:root:[Epoch 3 Batch 6000/12276] loss=0.3087, lr=0.0000080, metrics:accuracy:0.8902
INFO:root:[Epoch 3 Batch 6100/12276] loss=0.3040, lr=0.0000080, metrics:accuracy:0.8902
INFO:root:[Epoch 3 Batch 6200/12276] loss=0.3048, lr=0.0000080, metrics:accuracy:0.8902
INFO:root:[Epoch 3 Batch 6300/12276] loss=0.2904, lr=0.0000080, metrics:accuracy:0.8901
INFO:root:[Epoch 3 Batch 6400/12276] loss=0.2891, lr=0.0000080, metrics:accuracy:0.8901
INFO:root:[Epoch 3 Batch 6500/12276] loss=0.2937, lr=0.0000079, metrics:accuracy:0.8901
INFO:root:[Epoch 3 Batch 6600/12276] loss=0.3184, lr=0.0000079, metrics:accuracy:0.8900
INFO:root:[Epoch 3 Batch 6700/12276] loss=0.2966, lr=0.0000079, metrics:accuracy:0.8900
INFO:root:[Epoch 3 Batch 6800/12276] loss=0.2750, lr=0.0000079, metrics:accuracy:0.8901
INFO:root:[Epoch 3 Batch 6900/12276] loss=0.3056, lr=0.0000079, metrics:accuracy:0.8901
INFO:root:[Epoch 3 Batch 7000/12276] loss=0.2867, lr=0.0000079, metrics:accuracy:0.8902
INFO:root:[Epoch 3 Batch 7100/12276] loss=0.2887, lr=0.0000079, metrics:accuracy:0.8903
INFO:root:[Epoch 3 Batch 7200/12276] loss=0.2926, lr=0.0000079, metrics:accuracy:0.8904
INFO:root:[Epoch 3 Batch 7300/12276] loss=0.2830, lr=0.0000079, metrics:accuracy:0.8904
INFO:root:[Epoch 3 Batch 7400/12276] loss=0.2881, lr=0.0000079, metrics:accuracy:0.8905
INFO:root:[Epoch 3 Batch 7500/12276] loss=0.2870, lr=0.0000079, metrics:accuracy:0.8905
INFO:root:[Epoch 3 Batch 7600/12276] loss=0.3042, lr=0.0000079, metrics:accuracy:0.8904
INFO:root:[Epoch 3 Batch 7700/12276] loss=0.2811, lr=0.0000078, metrics:accuracy:0.8905
INFO:root:[Epoch 3 Batch 7800/12276] loss=0.3008, lr=0.0000078, metrics:accuracy:0.8905
INFO:root:[Epoch 3 Batch 7900/12276] loss=0.2862, lr=0.0000078, metrics:accuracy:0.8907
INFO:root:[Epoch 3 Batch 8000/12276] loss=0.3011, lr=0.0000078, metrics:accuracy:0.8906
INFO:root:[Epoch 3 Batch 8100/12276] loss=0.2890, lr=0.0000078, metrics:accuracy:0.8907
INFO:root:[Epoch 3 Batch 8200/12276] loss=0.2865, lr=0.0000078, metrics:accuracy:0.8907
INFO:root:[Epoch 3 Batch 8300/12276] loss=0.2957, lr=0.0000078, metrics:accuracy:0.8906
INFO:root:[Epoch 3 Batch 8400/12276] loss=0.2912, lr=0.0000078, metrics:accuracy:0.8906
INFO:root:[Epoch 3 Batch 8500/12276] loss=0.2949, lr=0.0000078, metrics:accuracy:0.8906
INFO:root:[Epoch 3 Batch 8600/12276] loss=0.3054, lr=0.0000078, metrics:accuracy:0.8905
INFO:root:[Epoch 3 Batch 8700/12276] loss=0.2837, lr=0.0000078, metrics:accuracy:0.8906
INFO:root:[Epoch 3 Batch 8800/12276] loss=0.2804, lr=0.0000077, metrics:accuracy:0.8906
INFO:root:[Epoch 3 Batch 8900/12276] loss=0.2928, lr=0.0000077, metrics:accuracy:0.8906
INFO:root:[Epoch 3 Batch 9000/12276] loss=0.3191, lr=0.0000077, metrics:accuracy:0.8905
INFO:root:[Epoch 3 Batch 9100/12276] loss=0.2948, lr=0.0000077, metrics:accuracy:0.8904
INFO:root:[Epoch 3 Batch 9200/12276] loss=0.2903, lr=0.0000077, metrics:accuracy:0.8905
INFO:root:[Epoch 3 Batch 9300/12276] loss=0.2649, lr=0.0000077, metrics:accuracy:0.8906
INFO:root:[Epoch 3 Batch 9400/12276] loss=0.3042, lr=0.0000077, metrics:accuracy:0.8906
INFO:root:[Epoch 3 Batch 9500/12276] loss=0.2890, lr=0.0000077, metrics:accuracy:0.8906
INFO:root:[Epoch 3 Batch 9600/12276] loss=0.2773, lr=0.0000077, metrics:accuracy:0.8907
INFO:root:[Epoch 3 Batch 9700/12276] loss=0.2653, lr=0.0000077, metrics:accuracy:0.8908
INFO:root:[Epoch 3 Batch 9800/12276] loss=0.2720, lr=0.0000077, metrics:accuracy:0.8909
INFO:root:[Epoch 3 Batch 9900/12276] loss=0.2963, lr=0.0000077, metrics:accuracy:0.8909
INFO:root:[Epoch 3 Batch 10000/12276] loss=0.2938, lr=0.0000076, metrics:accuracy:0.8908
INFO:root:[Epoch 3 Batch 10100/12276] loss=0.2755, lr=0.0000076, metrics:accuracy:0.8909
INFO:root:[Epoch 3 Batch 10200/12276] loss=0.3077, lr=0.0000076, metrics:accuracy:0.8909
INFO:root:[Epoch 3 Batch 10300/12276] loss=0.2746, lr=0.0000076, metrics:accuracy:0.8910
INFO:root:[Epoch 3 Batch 10400/12276] loss=0.2857, lr=0.0000076, metrics:accuracy:0.8909
INFO:root:[Epoch 3 Batch 10500/12276] loss=0.2914, lr=0.0000076, metrics:accuracy:0.8910
INFO:root:[Epoch 3 Batch 10600/12276] loss=0.2879, lr=0.0000076, metrics:accuracy:0.8910
INFO:root:[Epoch 3 Batch 10700/12276] loss=0.2934, lr=0.0000076, metrics:accuracy:0.8909
INFO:root:[Epoch 3 Batch 10800/12276] loss=0.3091, lr=0.0000076, metrics:accuracy:0.8908
INFO:root:[Epoch 3 Batch 10900/12276] loss=0.2725, lr=0.0000076, metrics:accuracy:0.8909
INFO:root:[Epoch 3 Batch 11000/12276] loss=0.2848, lr=0.0000076, metrics:accuracy:0.8910
INFO:root:[Epoch 3 Batch 11100/12276] loss=0.2801, lr=0.0000075, metrics:accuracy:0.8910
INFO:root:[Epoch 3 Batch 11200/12276] loss=0.2991, lr=0.0000075, metrics:accuracy:0.8910
INFO:root:[Epoch 3 Batch 11300/12276] loss=0.2849, lr=0.0000075, metrics:accuracy:0.8910
INFO:root:[Epoch 3 Batch 11400/12276] loss=0.2928, lr=0.0000075, metrics:accuracy:0.8910
INFO:root:[Epoch 3 Batch 11500/12276] loss=0.2827, lr=0.0000075, metrics:accuracy:0.8910
INFO:root:[Epoch 3 Batch 11600/12276] loss=0.2916, lr=0.0000075, metrics:accuracy:0.8911
INFO:root:[Epoch 3 Batch 11700/12276] loss=0.2833, lr=0.0000075, metrics:accuracy:0.8910
INFO:root:[Epoch 3 Batch 11800/12276] loss=0.2974, lr=0.0000075, metrics:accuracy:0.8910
INFO:root:[Epoch 3 Batch 11900/12276] loss=0.2968, lr=0.0000075, metrics:accuracy:0.8909
INFO:root:[Epoch 3 Batch 12000/12276] loss=0.2917, lr=0.0000075, metrics:accuracy:0.8909
INFO:root:[Epoch 3 Batch 12100/12276] loss=0.2914, lr=0.0000075, metrics:accuracy:0.8910
INFO:root:[Epoch 3 Batch 12200/12276] loss=0.2986, lr=0.0000075, metrics:accuracy:0.8910
INFO:root:Now we are doing evaluation on dev_matched with gpu(1).
INFO:root:[Batch 100/1227] loss=0.3524, metrics:accuracy:0.8688
INFO:root:[Batch 200/1227] loss=0.3569, metrics:accuracy:0.8725
INFO:root:[Batch 300/1227] loss=0.3505, metrics:accuracy:0.8700
INFO:root:[Batch 400/1227] loss=0.3512, metrics:accuracy:0.8716
INFO:root:[Batch 500/1227] loss=0.3585, metrics:accuracy:0.8758
INFO:root:[Batch 600/1227] loss=0.3222, metrics:accuracy:0.8777
INFO:root:[Batch 700/1227] loss=0.3540, metrics:accuracy:0.8768
INFO:root:[Batch 800/1227] loss=0.3453, metrics:accuracy:0.8764
INFO:root:[Batch 900/1227] loss=0.3451, metrics:accuracy:0.8756
INFO:root:[Batch 1000/1227] loss=0.3965, metrics:accuracy:0.8739
INFO:root:[Batch 1100/1227] loss=0.4183, metrics:accuracy:0.8720
INFO:root:[Batch 1200/1227] loss=0.3667, metrics:accuracy:0.8721
INFO:root:validation metrics:accuracy:0.8726
INFO:root:Time cost=26.19s, throughput=374.83 samples/s
INFO:root:Now we are doing evaluation on dev_mismatched with gpu(1).
INFO:root:[Batch 100/1229] loss=0.3939, metrics:accuracy:0.8675
INFO:root:[Batch 200/1229] loss=0.3632, metrics:accuracy:0.8712
INFO:root:[Batch 300/1229] loss=0.3242, metrics:accuracy:0.8750
INFO:root:[Batch 400/1229] loss=0.3522, metrics:accuracy:0.8741
INFO:root:[Batch 500/1229] loss=0.3561, metrics:accuracy:0.8730
INFO:root:[Batch 600/1229] loss=0.3294, metrics:accuracy:0.8744
INFO:root:[Batch 700/1229] loss=0.3826, metrics:accuracy:0.8739
INFO:root:[Batch 800/1229] loss=0.3498, metrics:accuracy:0.8727
INFO:root:[Batch 900/1229] loss=0.3554, metrics:accuracy:0.8733
INFO:root:[Batch 1000/1229] loss=0.3379, metrics:accuracy:0.8740
INFO:root:[Batch 1100/1229] loss=0.3798, metrics:accuracy:0.8738
INFO:root:[Batch 1200/1229] loss=0.3864, metrics:accuracy:0.8728
INFO:root:validation metrics:accuracy:0.8731
INFO:root:Time cost=26.54s, throughput=370.48 samples/s
INFO:root:params saved in: ./output_dir/model_bert_MNLI_2.params
INFO:root:Time cost=1838.79s
INFO:root:[Epoch 4 Batch 100/12276] loss=0.2425, lr=0.0000074, metrics:accuracy:0.9122
INFO:root:[Epoch 4 Batch 200/12276] loss=0.2506, lr=0.0000074, metrics:accuracy:0.9094
INFO:root:[Epoch 4 Batch 300/12276] loss=0.2513, lr=0.0000074, metrics:accuracy:0.9073
INFO:root:[Epoch 4 Batch 400/12276] loss=0.2352, lr=0.0000074, metrics:accuracy:0.9105
INFO:root:[Epoch 4 Batch 500/12276] loss=0.2264, lr=0.0000074, metrics:accuracy:0.9125
INFO:root:[Epoch 4 Batch 600/12276] loss=0.2306, lr=0.0000074, metrics:accuracy:0.9132
INFO:root:[Epoch 4 Batch 700/12276] loss=0.2371, lr=0.0000074, metrics:accuracy:0.9132
INFO:root:[Epoch 4 Batch 800/12276] loss=0.2471, lr=0.0000074, metrics:accuracy:0.9129
INFO:root:[Epoch 4 Batch 900/12276] loss=0.2284, lr=0.0000074, metrics:accuracy:0.9134
INFO:root:[Epoch 4 Batch 1000/12276] loss=0.2480, lr=0.0000074, metrics:accuracy:0.9135
INFO:root:[Epoch 4 Batch 1100/12276] loss=0.2254, lr=0.0000074, metrics:accuracy:0.9140
INFO:root:[Epoch 4 Batch 1200/12276] loss=0.2406, lr=0.0000073, metrics:accuracy:0.9139
INFO:root:[Epoch 4 Batch 1300/12276] loss=0.2436, lr=0.0000073, metrics:accuracy:0.9137
INFO:root:[Epoch 4 Batch 1400/12276] loss=0.2426, lr=0.0000073, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 1500/12276] loss=0.2197, lr=0.0000073, metrics:accuracy:0.9137
INFO:root:[Epoch 4 Batch 1600/12276] loss=0.2272, lr=0.0000073, metrics:accuracy:0.9139
INFO:root:[Epoch 4 Batch 1700/12276] loss=0.2473, lr=0.0000073, metrics:accuracy:0.9134
INFO:root:[Epoch 4 Batch 1800/12276] loss=0.2280, lr=0.0000073, metrics:accuracy:0.9135
INFO:root:[Epoch 4 Batch 1900/12276] loss=0.2550, lr=0.0000073, metrics:accuracy:0.9134
INFO:root:[Epoch 4 Batch 2000/12276] loss=0.2375, lr=0.0000073, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 2100/12276] loss=0.2270, lr=0.0000073, metrics:accuracy:0.9134
INFO:root:[Epoch 4 Batch 2200/12276] loss=0.2338, lr=0.0000073, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 2300/12276] loss=0.2430, lr=0.0000072, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 2400/12276] loss=0.2403, lr=0.0000072, metrics:accuracy:0.9132
INFO:root:[Epoch 4 Batch 2500/12276] loss=0.2506, lr=0.0000072, metrics:accuracy:0.9131
INFO:root:[Epoch 4 Batch 2600/12276] loss=0.2170, lr=0.0000072, metrics:accuracy:0.9135
INFO:root:[Epoch 4 Batch 2700/12276] loss=0.2432, lr=0.0000072, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 2800/12276] loss=0.2342, lr=0.0000072, metrics:accuracy:0.9134
INFO:root:[Epoch 4 Batch 2900/12276] loss=0.2389, lr=0.0000072, metrics:accuracy:0.9135
INFO:root:[Epoch 4 Batch 3000/12276] loss=0.2389, lr=0.0000072, metrics:accuracy:0.9136
INFO:root:[Epoch 4 Batch 3100/12276] loss=0.2541, lr=0.0000072, metrics:accuracy:0.9134
INFO:root:[Epoch 4 Batch 3200/12276] loss=0.2510, lr=0.0000072, metrics:accuracy:0.9132
INFO:root:[Epoch 4 Batch 3300/12276] loss=0.2461, lr=0.0000072, metrics:accuracy:0.9132
INFO:root:[Epoch 4 Batch 3400/12276] loss=0.2266, lr=0.0000072, metrics:accuracy:0.9134
INFO:root:[Epoch 4 Batch 3500/12276] loss=0.2403, lr=0.0000071, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 3600/12276] loss=0.2425, lr=0.0000071, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 3700/12276] loss=0.2135, lr=0.0000071, metrics:accuracy:0.9135
INFO:root:[Epoch 4 Batch 3800/12276] loss=0.2420, lr=0.0000071, metrics:accuracy:0.9134
INFO:root:[Epoch 4 Batch 3900/12276] loss=0.2694, lr=0.0000071, metrics:accuracy:0.9131
INFO:root:[Epoch 4 Batch 4000/12276] loss=0.2177, lr=0.0000071, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 4100/12276] loss=0.2331, lr=0.0000071, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 4200/12276] loss=0.2285, lr=0.0000071, metrics:accuracy:0.9134
INFO:root:[Epoch 4 Batch 4300/12276] loss=0.2441, lr=0.0000071, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 4400/12276] loss=0.2428, lr=0.0000071, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 4500/12276] loss=0.2293, lr=0.0000071, metrics:accuracy:0.9135
INFO:root:[Epoch 4 Batch 4600/12276] loss=0.2376, lr=0.0000070, metrics:accuracy:0.9135
INFO:root:[Epoch 4 Batch 4700/12276] loss=0.2472, lr=0.0000070, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 4800/12276] loss=0.2407, lr=0.0000070, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 4900/12276] loss=0.2419, lr=0.0000070, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 5000/12276] loss=0.2468, lr=0.0000070, metrics:accuracy:0.9134
INFO:root:[Epoch 4 Batch 5100/12276] loss=0.2386, lr=0.0000070, metrics:accuracy:0.9134
INFO:root:[Epoch 4 Batch 5200/12276] loss=0.2293, lr=0.0000070, metrics:accuracy:0.9134
INFO:root:[Epoch 4 Batch 5300/12276] loss=0.2628, lr=0.0000070, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 5400/12276] loss=0.2385, lr=0.0000070, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 5500/12276] loss=0.2316, lr=0.0000070, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 5600/12276] loss=0.2446, lr=0.0000070, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 5700/12276] loss=0.2514, lr=0.0000070, metrics:accuracy:0.9132
INFO:root:[Epoch 4 Batch 5800/12276] loss=0.2404, lr=0.0000069, metrics:accuracy:0.9132
INFO:root:[Epoch 4 Batch 5900/12276] loss=0.2309, lr=0.0000069, metrics:accuracy:0.9132
INFO:root:[Epoch 4 Batch 6000/12276] loss=0.2373, lr=0.0000069, metrics:accuracy:0.9132
INFO:root:[Epoch 4 Batch 6100/12276] loss=0.2475, lr=0.0000069, metrics:accuracy:0.9131
INFO:root:[Epoch 4 Batch 6200/12276] loss=0.2230, lr=0.0000069, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 6300/12276] loss=0.2371, lr=0.0000069, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 6400/12276] loss=0.2316, lr=0.0000069, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 6500/12276] loss=0.2688, lr=0.0000069, metrics:accuracy:0.9131
INFO:root:[Epoch 4 Batch 6600/12276] loss=0.2344, lr=0.0000069, metrics:accuracy:0.9131
INFO:root:[Epoch 4 Batch 6700/12276] loss=0.2473, lr=0.0000069, metrics:accuracy:0.9130
INFO:root:[Epoch 4 Batch 6800/12276] loss=0.2585, lr=0.0000069, metrics:accuracy:0.9130
INFO:root:[Epoch 4 Batch 6900/12276] loss=0.2442, lr=0.0000068, metrics:accuracy:0.9129
INFO:root:[Epoch 4 Batch 7000/12276] loss=0.2605, lr=0.0000068, metrics:accuracy:0.9129
INFO:root:[Epoch 4 Batch 7100/12276] loss=0.2349, lr=0.0000068, metrics:accuracy:0.9129
INFO:root:[Epoch 4 Batch 7200/12276] loss=0.2291, lr=0.0000068, metrics:accuracy:0.9130
INFO:root:[Epoch 4 Batch 7300/12276] loss=0.2524, lr=0.0000068, metrics:accuracy:0.9129
INFO:root:[Epoch 4 Batch 7400/12276] loss=0.2469, lr=0.0000068, metrics:accuracy:0.9129
INFO:root:[Epoch 4 Batch 7500/12276] loss=0.2291, lr=0.0000068, metrics:accuracy:0.9130
INFO:root:[Epoch 4 Batch 7600/12276] loss=0.2374, lr=0.0000068, metrics:accuracy:0.9129
INFO:root:[Epoch 4 Batch 7700/12276] loss=0.2472, lr=0.0000068, metrics:accuracy:0.9128
INFO:root:[Epoch 4 Batch 7800/12276] loss=0.2519, lr=0.0000068, metrics:accuracy:0.9128
INFO:root:[Epoch 4 Batch 7900/12276] loss=0.2375, lr=0.0000068, metrics:accuracy:0.9128
INFO:root:[Epoch 4 Batch 8000/12276] loss=0.2482, lr=0.0000068, metrics:accuracy:0.9127
INFO:root:[Epoch 4 Batch 8100/12276] loss=0.2275, lr=0.0000067, metrics:accuracy:0.9128
INFO:root:[Epoch 4 Batch 8200/12276] loss=0.2328, lr=0.0000067, metrics:accuracy:0.9128
INFO:root:[Epoch 4 Batch 8300/12276] loss=0.2642, lr=0.0000067, metrics:accuracy:0.9127
INFO:root:[Epoch 4 Batch 8400/12276] loss=0.2611, lr=0.0000067, metrics:accuracy:0.9126
INFO:root:[Epoch 4 Batch 8500/12276] loss=0.2551, lr=0.0000067, metrics:accuracy:0.9125
INFO:root:[Epoch 4 Batch 8600/12276] loss=0.2259, lr=0.0000067, metrics:accuracy:0.9126
INFO:root:[Epoch 4 Batch 8700/12276] loss=0.2470, lr=0.0000067, metrics:accuracy:0.9127
INFO:root:[Epoch 4 Batch 8800/12276] loss=0.2587, lr=0.0000067, metrics:accuracy:0.9126
INFO:root:[Epoch 4 Batch 8900/12276] loss=0.2203, lr=0.0000067, metrics:accuracy:0.9127
INFO:root:[Epoch 4 Batch 9000/12276] loss=0.2436, lr=0.0000067, metrics:accuracy:0.9127
INFO:root:[Epoch 4 Batch 9100/12276] loss=0.2498, lr=0.0000067, metrics:accuracy:0.9127
INFO:root:[Epoch 4 Batch 9200/12276] loss=0.2397, lr=0.0000066, metrics:accuracy:0.9128
INFO:root:[Epoch 4 Batch 9300/12276] loss=0.2593, lr=0.0000066, metrics:accuracy:0.9127
INFO:root:[Epoch 4 Batch 9400/12276] loss=0.2552, lr=0.0000066, metrics:accuracy:0.9126
INFO:root:[Epoch 4 Batch 9500/12276] loss=0.2508, lr=0.0000066, metrics:accuracy:0.9126
INFO:root:[Epoch 4 Batch 9600/12276] loss=0.2465, lr=0.0000066, metrics:accuracy:0.9125
INFO:root:[Epoch 4 Batch 9700/12276] loss=0.2338, lr=0.0000066, metrics:accuracy:0.9125
INFO:root:[Epoch 4 Batch 9800/12276] loss=0.2463, lr=0.0000066, metrics:accuracy:0.9125
INFO:root:[Epoch 4 Batch 9900/12276] loss=0.2395, lr=0.0000066, metrics:accuracy:0.9125
INFO:root:[Epoch 4 Batch 10000/12276] loss=0.2570, lr=0.0000066, metrics:accuracy:0.9124
INFO:root:[Epoch 4 Batch 10100/12276] loss=0.2455, lr=0.0000066, metrics:accuracy:0.9124
INFO:root:[Epoch 4 Batch 10200/12276] loss=0.2589, lr=0.0000066, metrics:accuracy:0.9123
INFO:root:[Epoch 4 Batch 10300/12276] loss=0.2302, lr=0.0000066, metrics:accuracy:0.9124
INFO:root:[Epoch 4 Batch 10400/12276] loss=0.2417, lr=0.0000065, metrics:accuracy:0.9125
INFO:root:[Epoch 4 Batch 10500/12276] loss=0.2583, lr=0.0000065, metrics:accuracy:0.9125
INFO:root:[Epoch 4 Batch 10600/12276] loss=0.2543, lr=0.0000065, metrics:accuracy:0.9124
INFO:root:[Epoch 4 Batch 10700/12276] loss=0.2353, lr=0.0000065, metrics:accuracy:0.9124
INFO:root:[Epoch 4 Batch 10800/12276] loss=0.2739, lr=0.0000065, metrics:accuracy:0.9123
INFO:root:[Epoch 4 Batch 10900/12276] loss=0.2527, lr=0.0000065, metrics:accuracy:0.9123
INFO:root:[Epoch 4 Batch 11000/12276] loss=0.2387, lr=0.0000065, metrics:accuracy:0.9123
INFO:root:[Epoch 4 Batch 11100/12276] loss=0.2468, lr=0.0000065, metrics:accuracy:0.9124
INFO:root:[Epoch 4 Batch 11200/12276] loss=0.2664, lr=0.0000065, metrics:accuracy:0.9123
INFO:root:[Epoch 4 Batch 11300/12276] loss=0.2420, lr=0.0000065, metrics:accuracy:0.9123
INFO:root:[Epoch 4 Batch 11400/12276] loss=0.2274, lr=0.0000065, metrics:accuracy:0.9123
INFO:root:[Epoch 4 Batch 11500/12276] loss=0.2455, lr=0.0000064, metrics:accuracy:0.9123
INFO:root:[Epoch 4 Batch 11600/12276] loss=0.2351, lr=0.0000064, metrics:accuracy:0.9123
INFO:root:[Epoch 4 Batch 11700/12276] loss=0.2552, lr=0.0000064, metrics:accuracy:0.9123
INFO:root:[Epoch 4 Batch 11800/12276] loss=0.2513, lr=0.0000064, metrics:accuracy:0.9122
INFO:root:[Epoch 4 Batch 11900/12276] loss=0.2416, lr=0.0000064, metrics:accuracy:0.9122
INFO:root:[Epoch 4 Batch 12000/12276] loss=0.2470, lr=0.0000064, metrics:accuracy:0.9122
INFO:root:[Epoch 4 Batch 12100/12276] loss=0.2426, lr=0.0000064, metrics:accuracy:0.9122
INFO:root:[Epoch 4 Batch 12200/12276] loss=0.2400, lr=0.0000064, metrics:accuracy:0.9122
INFO:root:Now we are doing evaluation on dev_matched with gpu(1).
INFO:root:[Batch 100/1227] loss=0.3799, metrics:accuracy:0.8750
INFO:root:[Batch 200/1227] loss=0.3971, metrics:accuracy:0.8731
INFO:root:[Batch 300/1227] loss=0.3579, metrics:accuracy:0.8729
INFO:root:[Batch 400/1227] loss=0.3944, metrics:accuracy:0.8766
INFO:root:[Batch 500/1227] loss=0.3886, metrics:accuracy:0.8792
INFO:root:[Batch 600/1227] loss=0.3553, metrics:accuracy:0.8821
INFO:root:[Batch 700/1227] loss=0.4158, metrics:accuracy:0.8798
INFO:root:[Batch 800/1227] loss=0.3776, metrics:accuracy:0.8802
INFO:root:[Batch 900/1227] loss=0.3579, metrics:accuracy:0.8803
INFO:root:[Batch 1000/1227] loss=0.4332, metrics:accuracy:0.8785
INFO:root:[Batch 1100/1227] loss=0.4357, metrics:accuracy:0.8772
INFO:root:[Batch 1200/1227] loss=0.4093, metrics:accuracy:0.8762
INFO:root:validation metrics:accuracy:0.8769
INFO:root:Time cost=26.39s, throughput=372.00 samples/s
INFO:root:Now we are doing evaluation on dev_mismatched with gpu(1).
INFO:root:[Batch 100/1229] loss=0.4355, metrics:accuracy:0.8725
INFO:root:[Batch 200/1229] loss=0.3935, metrics:accuracy:0.8700
INFO:root:[Batch 300/1229] loss=0.3723, metrics:accuracy:0.8783
INFO:root:[Batch 400/1229] loss=0.4027, metrics:accuracy:0.8781
INFO:root:[Batch 500/1229] loss=0.3951, metrics:accuracy:0.8762
INFO:root:[Batch 600/1229] loss=0.3795, metrics:accuracy:0.8773
INFO:root:[Batch 700/1229] loss=0.4544, metrics:accuracy:0.8741
INFO:root:[Batch 800/1229] loss=0.3535, metrics:accuracy:0.8752
INFO:root:[Batch 900/1229] loss=0.4116, metrics:accuracy:0.8747
INFO:root:[Batch 1000/1229] loss=0.3745, metrics:accuracy:0.8736
INFO:root:[Batch 1100/1229] loss=0.4227, metrics:accuracy:0.8726
INFO:root:[Batch 1200/1229] loss=0.4300, metrics:accuracy:0.8719
INFO:root:validation metrics:accuracy:0.8723
INFO:root:Time cost=26.51s, throughput=370.85 samples/s
INFO:root:params saved in: ./output_dir/model_bert_MNLI_3.params
INFO:root:Time cost=1788.46s
INFO:root:[Epoch 5 Batch 100/12276] loss=0.1885, lr=0.0000064, metrics:accuracy:0.9313
INFO:root:[Epoch 5 Batch 200/12276] loss=0.1918, lr=0.0000064, metrics:accuracy:0.9316
INFO:root:[Epoch 5 Batch 300/12276] loss=0.2098, lr=0.0000064, metrics:accuracy:0.9303
INFO:root:[Epoch 5 Batch 400/12276] loss=0.2025, lr=0.0000063, metrics:accuracy:0.9290
INFO:root:[Epoch 5 Batch 500/12276] loss=0.1960, lr=0.0000063, metrics:accuracy:0.9295
INFO:root:[Epoch 5 Batch 600/12276] loss=0.1697, lr=0.0000063, metrics:accuracy:0.9320
INFO:root:[Epoch 5 Batch 700/12276] loss=0.1966, lr=0.0000063, metrics:accuracy:0.9319
INFO:root:[Epoch 5 Batch 800/12276] loss=0.1781, lr=0.0000063, metrics:accuracy:0.9331
INFO:root:[Epoch 5 Batch 900/12276] loss=0.1933, lr=0.0000063, metrics:accuracy:0.9330
INFO:root:[Epoch 5 Batch 1000/12276] loss=0.2116, lr=0.0000063, metrics:accuracy:0.9325
INFO:root:[Epoch 5 Batch 1100/12276] loss=0.2004, lr=0.0000063, metrics:accuracy:0.9324
INFO:root:[Epoch 5 Batch 1200/12276] loss=0.2070, lr=0.0000063, metrics:accuracy:0.9320
INFO:root:[Epoch 5 Batch 1300/12276] loss=0.1905, lr=0.0000063, metrics:accuracy:0.9318
INFO:root:[Epoch 5 Batch 1400/12276] loss=0.1941, lr=0.0000063, metrics:accuracy:0.9318
INFO:root:[Epoch 5 Batch 1500/12276] loss=0.1960, lr=0.0000063, metrics:accuracy:0.9316
INFO:root:[Epoch 5 Batch 1600/12276] loss=0.1877, lr=0.0000062, metrics:accuracy:0.9317
INFO:root:[Epoch 5 Batch 1700/12276] loss=0.1890, lr=0.0000062, metrics:accuracy:0.9317
INFO:root:[Epoch 5 Batch 1800/12276] loss=0.1821, lr=0.0000062, metrics:accuracy:0.9319
INFO:root:[Epoch 5 Batch 1900/12276] loss=0.2096, lr=0.0000062, metrics:accuracy:0.9317
INFO:root:[Epoch 5 Batch 2000/12276] loss=0.2011, lr=0.0000062, metrics:accuracy:0.9314
INFO:root:[Epoch 5 Batch 2100/12276] loss=0.2010, lr=0.0000062, metrics:accuracy:0.9313
INFO:root:[Epoch 5 Batch 2200/12276] loss=0.2178, lr=0.0000062, metrics:accuracy:0.9308
INFO:root:[Epoch 5 Batch 2300/12276] loss=0.2010, lr=0.0000062, metrics:accuracy:0.9307
INFO:root:[Epoch 5 Batch 2400/12276] loss=0.1801, lr=0.0000062, metrics:accuracy:0.9310
INFO:root:[Epoch 5 Batch 2500/12276] loss=0.1933, lr=0.0000062, metrics:accuracy:0.9309
INFO:root:[Epoch 5 Batch 2600/12276] loss=0.2032, lr=0.0000062, metrics:accuracy:0.9308
INFO:root:[Epoch 5 Batch 2700/12276] loss=0.1934, lr=0.0000061, metrics:accuracy:0.9308
INFO:root:[Epoch 5 Batch 2800/12276] loss=0.2084, lr=0.0000061, metrics:accuracy:0.9307
INFO:root:[Epoch 5 Batch 2900/12276] loss=0.1961, lr=0.0000061, metrics:accuracy:0.9307
INFO:root:[Epoch 5 Batch 3000/12276] loss=0.1914, lr=0.0000061, metrics:accuracy:0.9306
INFO:root:[Epoch 5 Batch 3100/12276] loss=0.1858, lr=0.0000061, metrics:accuracy:0.9309
INFO:root:[Epoch 5 Batch 3200/12276] loss=0.2219, lr=0.0000061, metrics:accuracy:0.9305
INFO:root:[Epoch 5 Batch 3300/12276] loss=0.2035, lr=0.0000061, metrics:accuracy:0.9304
INFO:root:[Epoch 5 Batch 3400/12276] loss=0.2068, lr=0.0000061, metrics:accuracy:0.9303
INFO:root:[Epoch 5 Batch 3500/12276] loss=0.1998, lr=0.0000061, metrics:accuracy:0.9303
INFO:root:[Epoch 5 Batch 3600/12276] loss=0.1956, lr=0.0000061, metrics:accuracy:0.9303
INFO:root:[Epoch 5 Batch 3700/12276] loss=0.1959, lr=0.0000061, metrics:accuracy:0.9304
INFO:root:[Epoch 5 Batch 3800/12276] loss=0.1923, lr=0.0000061, metrics:accuracy:0.9305
INFO:root:[Epoch 5 Batch 3900/12276] loss=0.2087, lr=0.0000060, metrics:accuracy:0.9303
INFO:root:[Epoch 5 Batch 4000/12276] loss=0.2040, lr=0.0000060, metrics:accuracy:0.9302
INFO:root:[Epoch 5 Batch 4100/12276] loss=0.1936, lr=0.0000060, metrics:accuracy:0.9302
INFO:root:[Epoch 5 Batch 4200/12276] loss=0.1723, lr=0.0000060, metrics:accuracy:0.9304
INFO:root:[Epoch 5 Batch 4300/12276] loss=0.2188, lr=0.0000060, metrics:accuracy:0.9302
INFO:root:[Epoch 5 Batch 4400/12276] loss=0.1874, lr=0.0000060, metrics:accuracy:0.9303
INFO:root:[Epoch 5 Batch 4500/12276] loss=0.2203, lr=0.0000060, metrics:accuracy:0.9301
INFO:root:[Epoch 5 Batch 4600/12276] loss=0.2120, lr=0.0000060, metrics:accuracy:0.9299
INFO:root:[Epoch 5 Batch 4700/12276] loss=0.1936, lr=0.0000060, metrics:accuracy:0.9299
INFO:root:[Epoch 5 Batch 4800/12276] loss=0.2045, lr=0.0000060, metrics:accuracy:0.9299
INFO:root:[Epoch 5 Batch 4900/12276] loss=0.2224, lr=0.0000060, metrics:accuracy:0.9298
INFO:root:[Epoch 5 Batch 5000/12276] loss=0.1860, lr=0.0000059, metrics:accuracy:0.9299
INFO:root:[Epoch 5 Batch 5100/12276] loss=0.2054, lr=0.0000059, metrics:accuracy:0.9298
INFO:root:[Epoch 5 Batch 5200/12276] loss=0.2027, lr=0.0000059, metrics:accuracy:0.9297
INFO:root:[Epoch 5 Batch 5300/12276] loss=0.2075, lr=0.0000059, metrics:accuracy:0.9296
INFO:root:[Epoch 5 Batch 5400/12276] loss=0.2123, lr=0.0000059, metrics:accuracy:0.9296
INFO:root:[Epoch 5 Batch 5500/12276] loss=0.1907, lr=0.0000059, metrics:accuracy:0.9296
INFO:root:[Epoch 5 Batch 5600/12276] loss=0.1952, lr=0.0000059, metrics:accuracy:0.9296
INFO:root:[Epoch 5 Batch 5700/12276] loss=0.2014, lr=0.0000059, metrics:accuracy:0.9296
INFO:root:[Epoch 5 Batch 5800/12276] loss=0.1950, lr=0.0000059, metrics:accuracy:0.9295
INFO:root:[Epoch 5 Batch 5900/12276] loss=0.1963, lr=0.0000059, metrics:accuracy:0.9296
INFO:root:[Epoch 5 Batch 6000/12276] loss=0.1923, lr=0.0000059, metrics:accuracy:0.9296
INFO:root:[Epoch 5 Batch 6100/12276] loss=0.2088, lr=0.0000059, metrics:accuracy:0.9295
INFO:root:[Epoch 5 Batch 6200/12276] loss=0.1914, lr=0.0000058, metrics:accuracy:0.9296
INFO:root:[Epoch 5 Batch 6300/12276] loss=0.2146, lr=0.0000058, metrics:accuracy:0.9295
INFO:root:[Epoch 5 Batch 6400/12276] loss=0.2196, lr=0.0000058, metrics:accuracy:0.9294
INFO:root:[Epoch 5 Batch 6500/12276] loss=0.1843, lr=0.0000058, metrics:accuracy:0.9295
INFO:root:[Epoch 5 Batch 6600/12276] loss=0.2062, lr=0.0000058, metrics:accuracy:0.9295
INFO:root:[Epoch 5 Batch 6700/12276] loss=0.1997, lr=0.0000058, metrics:accuracy:0.9295
INFO:root:[Epoch 5 Batch 6800/12276] loss=0.2087, lr=0.0000058, metrics:accuracy:0.9295
INFO:root:[Epoch 5 Batch 6900/12276] loss=0.2036, lr=0.0000058, metrics:accuracy:0.9295
INFO:root:[Epoch 5 Batch 7000/12276] loss=0.2192, lr=0.0000058, metrics:accuracy:0.9293
INFO:root:[Epoch 5 Batch 7100/12276] loss=0.1841, lr=0.0000058, metrics:accuracy:0.9293
INFO:root:[Epoch 5 Batch 7200/12276] loss=0.1919, lr=0.0000058, metrics:accuracy:0.9293
INFO:root:[Epoch 5 Batch 7300/12276] loss=0.2086, lr=0.0000057, metrics:accuracy:0.9292
INFO:root:[Epoch 5 Batch 7400/12276] loss=0.2046, lr=0.0000057, metrics:accuracy:0.9291
INFO:root:[Epoch 5 Batch 7500/12276] loss=0.2123, lr=0.0000057, metrics:accuracy:0.9291
INFO:root:[Epoch 5 Batch 7600/12276] loss=0.1982, lr=0.0000057, metrics:accuracy:0.9290
INFO:root:[Epoch 5 Batch 7700/12276] loss=0.1872, lr=0.0000057, metrics:accuracy:0.9291
INFO:root:[Epoch 5 Batch 7800/12276] loss=0.1963, lr=0.0000057, metrics:accuracy:0.9291
INFO:root:[Epoch 5 Batch 7900/12276] loss=0.1974, lr=0.0000057, metrics:accuracy:0.9291
INFO:root:[Epoch 5 Batch 8000/12276] loss=0.2155, lr=0.0000057, metrics:accuracy:0.9290
INFO:root:[Epoch 5 Batch 8100/12276] loss=0.1983, lr=0.0000057, metrics:accuracy:0.9290
INFO:root:[Epoch 5 Batch 8200/12276] loss=0.1989, lr=0.0000057, metrics:accuracy:0.9290
INFO:root:[Epoch 5 Batch 8300/12276] loss=0.2103, lr=0.0000057, metrics:accuracy:0.9290
INFO:root:[Epoch 5 Batch 8400/12276] loss=0.2087, lr=0.0000057, metrics:accuracy:0.9289
INFO:root:[Epoch 5 Batch 8500/12276] loss=0.2041, lr=0.0000056, metrics:accuracy:0.9289
INFO:root:[Epoch 5 Batch 8600/12276] loss=0.1992, lr=0.0000056, metrics:accuracy:0.9289
INFO:root:[Epoch 5 Batch 8700/12276] loss=0.2076, lr=0.0000056, metrics:accuracy:0.9289
INFO:root:[Epoch 5 Batch 8800/12276] loss=0.2148, lr=0.0000056, metrics:accuracy:0.9289
INFO:root:[Epoch 5 Batch 8900/12276] loss=0.2180, lr=0.0000056, metrics:accuracy:0.9288
INFO:root:[Epoch 5 Batch 9000/12276] loss=0.1786, lr=0.0000056, metrics:accuracy:0.9289
INFO:root:[Epoch 5 Batch 9100/12276] loss=0.2223, lr=0.0000056, metrics:accuracy:0.9288
INFO:root:[Epoch 5 Batch 9200/12276] loss=0.1853, lr=0.0000056, metrics:accuracy:0.9289
INFO:root:[Epoch 5 Batch 9300/12276] loss=0.2108, lr=0.0000056, metrics:accuracy:0.9288
INFO:root:[Epoch 5 Batch 9400/12276] loss=0.1998, lr=0.0000056, metrics:accuracy:0.9288
INFO:root:[Epoch 5 Batch 9500/12276] loss=0.1970, lr=0.0000056, metrics:accuracy:0.9288
INFO:root:[Epoch 5 Batch 9600/12276] loss=0.1949, lr=0.0000055, metrics:accuracy:0.9289
INFO:root:[Epoch 5 Batch 9700/12276] loss=0.2183, lr=0.0000055, metrics:accuracy:0.9288
INFO:root:[Epoch 5 Batch 9800/12276] loss=0.2194, lr=0.0000055, metrics:accuracy:0.9286
INFO:root:[Epoch 5 Batch 9900/12276] loss=0.1921, lr=0.0000055, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 10000/12276] loss=0.2046, lr=0.0000055, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 10100/12276] loss=0.1937, lr=0.0000055, metrics:accuracy:0.9286
INFO:root:[Epoch 5 Batch 10200/12276] loss=0.1857, lr=0.0000055, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 10300/12276] loss=0.2272, lr=0.0000055, metrics:accuracy:0.9286
INFO:root:[Epoch 5 Batch 10400/12276] loss=0.1986, lr=0.0000055, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 10500/12276] loss=0.1951, lr=0.0000055, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 10600/12276] loss=0.2080, lr=0.0000055, metrics:accuracy:0.9286
INFO:root:[Epoch 5 Batch 10700/12276] loss=0.1681, lr=0.0000055, metrics:accuracy:0.9288
INFO:root:[Epoch 5 Batch 10800/12276] loss=0.2173, lr=0.0000054, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 10900/12276] loss=0.1854, lr=0.0000054, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 11000/12276] loss=0.2003, lr=0.0000054, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 11100/12276] loss=0.1832, lr=0.0000054, metrics:accuracy:0.9288
INFO:root:[Epoch 5 Batch 11200/12276] loss=0.2089, lr=0.0000054, metrics:accuracy:0.9288
INFO:root:[Epoch 5 Batch 11300/12276] loss=0.2028, lr=0.0000054, metrics:accuracy:0.9288
INFO:root:[Epoch 5 Batch 11400/12276] loss=0.1959, lr=0.0000054, metrics:accuracy:0.9288
INFO:root:[Epoch 5 Batch 11500/12276] loss=0.2150, lr=0.0000054, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 11600/12276] loss=0.1968, lr=0.0000054, metrics:accuracy:0.9288
INFO:root:[Epoch 5 Batch 11700/12276] loss=0.2121, lr=0.0000054, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 11800/12276] loss=0.1965, lr=0.0000054, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 11900/12276] loss=0.1971, lr=0.0000054, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 12000/12276] loss=0.2098, lr=0.0000053, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 12100/12276] loss=0.1852, lr=0.0000053, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 12200/12276] loss=0.2040, lr=0.0000053, metrics:accuracy:0.9286
INFO:root:Now we are doing evaluation on dev_matched with gpu(1).
INFO:root:[Batch 100/1227] loss=0.4472, metrics:accuracy:0.8562
INFO:root:[Batch 200/1227] loss=0.4390, metrics:accuracy:0.8631
INFO:root:[Batch 300/1227] loss=0.4237, metrics:accuracy:0.8692
INFO:root:[Batch 400/1227] loss=0.4050, metrics:accuracy:0.8747
INFO:root:[Batch 500/1227] loss=0.4332, metrics:accuracy:0.8752
INFO:root:[Batch 600/1227] loss=0.3672, metrics:accuracy:0.8781
INFO:root:[Batch 700/1227] loss=0.4698, metrics:accuracy:0.8759
INFO:root:[Batch 800/1227] loss=0.4055, metrics:accuracy:0.8767
INFO:root:[Batch 900/1227] loss=0.4231, metrics:accuracy:0.8760
INFO:root:[Batch 1000/1227] loss=0.4959, metrics:accuracy:0.8741
INFO:root:[Batch 1100/1227] loss=0.4880, metrics:accuracy:0.8731
INFO:root:[Batch 1200/1227] loss=0.4539, metrics:accuracy:0.8726
INFO:root:validation metrics:accuracy:0.8736
INFO:root:Time cost=26.58s, throughput=369.27 samples/s
INFO:root:Now we are doing evaluation on dev_mismatched with gpu(1).
INFO:root:[Batch 100/1229] loss=0.5214, metrics:accuracy:0.8650
INFO:root:[Batch 200/1229] loss=0.4059, metrics:accuracy:0.8681
INFO:root:[Batch 300/1229] loss=0.4111, metrics:accuracy:0.8717
INFO:root:[Batch 400/1229] loss=0.4596, metrics:accuracy:0.8703
INFO:root:[Batch 500/1229] loss=0.4315, metrics:accuracy:0.8702
INFO:root:[Batch 600/1229] loss=0.4226, metrics:accuracy:0.8719
INFO:root:[Batch 700/1229] loss=0.5130, metrics:accuracy:0.8696
INFO:root:[Batch 800/1229] loss=0.4070, metrics:accuracy:0.8703
INFO:root:[Batch 900/1229] loss=0.4665, metrics:accuracy:0.8701
INFO:root:[Batch 1000/1229] loss=0.4349, metrics:accuracy:0.8699
INFO:root:[Batch 1100/1229] loss=0.4761, metrics:accuracy:0.8691
INFO:root:[Batch 1200/1229] loss=0.4817, metrics:accuracy:0.8680
INFO:root:validation metrics:accuracy:0.8685
INFO:root:Time cost=26.59s, throughput=369.80 samples/s
INFO:root:params saved in: ./output_dir/model_bert_MNLI_4.params
INFO:root:Time cost=1800.37s
INFO:root:[Epoch 6 Batch 100/12276] loss=0.1645, lr=0.0000053, metrics:accuracy:0.9444
INFO:root:[Epoch 6 Batch 200/12276] loss=0.1642, lr=0.0000053, metrics:accuracy:0.9439
INFO:root:[Epoch 6 Batch 300/12276] loss=0.1704, lr=0.0000053, metrics:accuracy:0.9432
INFO:root:[Epoch 6 Batch 400/12276] loss=0.1651, lr=0.0000053, metrics:accuracy:0.9433
INFO:root:[Epoch 6 Batch 500/12276] loss=0.1444, lr=0.0000053, metrics:accuracy:0.9453
INFO:root:[Epoch 6 Batch 600/12276] loss=0.1603, lr=0.0000053, metrics:accuracy:0.9447
INFO:root:[Epoch 6 Batch 700/12276] loss=0.1782, lr=0.0000053, metrics:accuracy:0.9440
INFO:root:[Epoch 6 Batch 800/12276] loss=0.1490, lr=0.0000052, metrics:accuracy:0.9445
INFO:root:[Epoch 6 Batch 900/12276] loss=0.1467, lr=0.0000052, metrics:accuracy:0.9452
INFO:root:[Epoch 6 Batch 1000/12276] loss=0.1591, lr=0.0000052, metrics:accuracy:0.9454
INFO:root:[Epoch 6 Batch 1100/12276] loss=0.1545, lr=0.0000052, metrics:accuracy:0.9456
INFO:root:[Epoch 6 Batch 1200/12276] loss=0.1765, lr=0.0000052, metrics:accuracy:0.9449
INFO:root:[Epoch 6 Batch 1300/12276] loss=0.1495, lr=0.0000052, metrics:accuracy:0.9449
INFO:root:[Epoch 6 Batch 1400/12276] loss=0.1496, lr=0.0000052, metrics:accuracy:0.9449
INFO:root:[Epoch 6 Batch 1500/12276] loss=0.1687, lr=0.0000052, metrics:accuracy:0.9448
INFO:root:[Epoch 6 Batch 1600/12276] loss=0.1633, lr=0.0000052, metrics:accuracy:0.9447
INFO:root:[Epoch 6 Batch 1700/12276] loss=0.1800, lr=0.0000052, metrics:accuracy:0.9446
INFO:root:[Epoch 6 Batch 1800/12276] loss=0.1683, lr=0.0000052, metrics:accuracy:0.9443
INFO:root:[Epoch 6 Batch 1900/12276] loss=0.1646, lr=0.0000052, metrics:accuracy:0.9441
INFO:root:[Epoch 6 Batch 2000/12276] loss=0.1521, lr=0.0000051, metrics:accuracy:0.9443
INFO:root:[Epoch 6 Batch 2100/12276] loss=0.1661, lr=0.0000051, metrics:accuracy:0.9443
INFO:root:[Epoch 6 Batch 2200/12276] loss=0.1745, lr=0.0000051, metrics:accuracy:0.9438
INFO:root:[Epoch 6 Batch 2300/12276] loss=0.1705, lr=0.0000051, metrics:accuracy:0.9437
INFO:root:[Epoch 6 Batch 2400/12276] loss=0.1579, lr=0.0000051, metrics:accuracy:0.9438
INFO:root:[Epoch 6 Batch 2500/12276] loss=0.1765, lr=0.0000051, metrics:accuracy:0.9436
INFO:root:[Epoch 6 Batch 2600/12276] loss=0.1577, lr=0.0000051, metrics:accuracy:0.9437
INFO:root:[Epoch 6 Batch 2700/12276] loss=0.1630, lr=0.0000051, metrics:accuracy:0.9438
INFO:root:[Epoch 6 Batch 2800/12276] loss=0.1633, lr=0.0000051, metrics:accuracy:0.9439
INFO:root:[Epoch 6 Batch 2900/12276] loss=0.1590, lr=0.0000051, metrics:accuracy:0.9439
INFO:root:[Epoch 6 Batch 3000/12276] loss=0.1778, lr=0.0000051, metrics:accuracy:0.9438
INFO:root:[Epoch 6 Batch 3100/12276] loss=0.1643, lr=0.0000050, metrics:accuracy:0.9438
INFO:root:[Epoch 6 Batch 3200/12276] loss=0.1881, lr=0.0000050, metrics:accuracy:0.9436
INFO:root:[Epoch 6 Batch 3300/12276] loss=0.1547, lr=0.0000050, metrics:accuracy:0.9436
INFO:root:[Epoch 6 Batch 3400/12276] loss=0.1852, lr=0.0000050, metrics:accuracy:0.9434
INFO:root:[Epoch 6 Batch 3500/12276] loss=0.1747, lr=0.0000050, metrics:accuracy:0.9433
INFO:root:[Epoch 6 Batch 3600/12276] loss=0.1742, lr=0.0000050, metrics:accuracy:0.9433
INFO:root:[Epoch 6 Batch 3700/12276] loss=0.1790, lr=0.0000050, metrics:accuracy:0.9431
INFO:root:[Epoch 6 Batch 3800/12276] loss=0.1706, lr=0.0000050, metrics:accuracy:0.9431
INFO:root:[Epoch 6 Batch 3900/12276] loss=0.1740, lr=0.0000050, metrics:accuracy:0.9430
INFO:root:[Epoch 6 Batch 4000/12276] loss=0.1688, lr=0.0000050, metrics:accuracy:0.9430
INFO:root:[Epoch 6 Batch 4100/12276] loss=0.1798, lr=0.0000050, metrics:accuracy:0.9429
INFO:root:[Epoch 6 Batch 4200/12276] loss=0.1550, lr=0.0000050, metrics:accuracy:0.9430
INFO:root:[Epoch 6 Batch 4300/12276] loss=0.1781, lr=0.0000049, metrics:accuracy:0.9430
INFO:root:[Epoch 6 Batch 4400/12276] loss=0.1624, lr=0.0000049, metrics:accuracy:0.9430
INFO:root:[Epoch 6 Batch 4500/12276] loss=0.1600, lr=0.0000049, metrics:accuracy:0.9430
INFO:root:[Epoch 6 Batch 4600/12276] loss=0.1649, lr=0.0000049, metrics:accuracy:0.9430
INFO:root:[Epoch 6 Batch 4700/12276] loss=0.1807, lr=0.0000049, metrics:accuracy:0.9428
INFO:root:[Epoch 6 Batch 4800/12276] loss=0.1598, lr=0.0000049, metrics:accuracy:0.9428
INFO:root:[Epoch 6 Batch 4900/12276] loss=0.1651, lr=0.0000049, metrics:accuracy:0.9428
INFO:root:[Epoch 6 Batch 5000/12276] loss=0.1578, lr=0.0000049, metrics:accuracy:0.9429
INFO:root:[Epoch 6 Batch 5100/12276] loss=0.1771, lr=0.0000049, metrics:accuracy:0.9428
INFO:root:[Epoch 6 Batch 5200/12276] loss=0.1743, lr=0.0000049, metrics:accuracy:0.9428
INFO:root:[Epoch 6 Batch 5300/12276] loss=0.1545, lr=0.0000049, metrics:accuracy:0.9429
INFO:root:[Epoch 6 Batch 5400/12276] loss=0.1600, lr=0.0000048, metrics:accuracy:0.9429
INFO:root:[Epoch 6 Batch 5500/12276] loss=0.1598, lr=0.0000048, metrics:accuracy:0.9429
INFO:root:[Epoch 6 Batch 5600/12276] loss=0.1731, lr=0.0000048, metrics:accuracy:0.9428
INFO:root:[Epoch 6 Batch 5700/12276] loss=0.1624, lr=0.0000048, metrics:accuracy:0.9428
INFO:root:[Epoch 6 Batch 5800/12276] loss=0.1554, lr=0.0000048, metrics:accuracy:0.9428
INFO:root:[Epoch 6 Batch 5900/12276] loss=0.1675, lr=0.0000048, metrics:accuracy:0.9428
INFO:root:[Epoch 6 Batch 6000/12276] loss=0.1612, lr=0.0000048, metrics:accuracy:0.9429
INFO:root:[Epoch 6 Batch 6100/12276] loss=0.1719, lr=0.0000048, metrics:accuracy:0.9428
INFO:root:[Epoch 6 Batch 6200/12276] loss=0.1717, lr=0.0000048, metrics:accuracy:0.9428
INFO:root:[Epoch 6 Batch 6300/12276] loss=0.1798, lr=0.0000048, metrics:accuracy:0.9427
INFO:root:[Epoch 6 Batch 6400/12276] loss=0.1512, lr=0.0000048, metrics:accuracy:0.9427
INFO:root:[Epoch 6 Batch 6500/12276] loss=0.1631, lr=0.0000048, metrics:accuracy:0.9428
INFO:root:[Epoch 6 Batch 6600/12276] loss=0.1873, lr=0.0000047, metrics:accuracy:0.9427
INFO:root:[Epoch 6 Batch 6700/12276] loss=0.1702, lr=0.0000047, metrics:accuracy:0.9427
INFO:root:[Epoch 6 Batch 6800/12276] loss=0.1827, lr=0.0000047, metrics:accuracy:0.9426
INFO:root:[Epoch 6 Batch 6900/12276] loss=0.1740, lr=0.0000047, metrics:accuracy:0.9425
INFO:root:[Epoch 6 Batch 7000/12276] loss=0.1652, lr=0.0000047, metrics:accuracy:0.9425
INFO:root:[Epoch 6 Batch 7100/12276] loss=0.1530, lr=0.0000047, metrics:accuracy:0.9426
INFO:root:[Epoch 6 Batch 7200/12276] loss=0.1850, lr=0.0000047, metrics:accuracy:0.9425
INFO:root:[Epoch 6 Batch 7300/12276] loss=0.1639, lr=0.0000047, metrics:accuracy:0.9426
INFO:root:[Epoch 6 Batch 7400/12276] loss=0.1907, lr=0.0000047, metrics:accuracy:0.9424
INFO:root:[Epoch 6 Batch 7500/12276] loss=0.1628, lr=0.0000047, metrics:accuracy:0.9425
INFO:root:[Epoch 6 Batch 7600/12276] loss=0.1879, lr=0.0000047, metrics:accuracy:0.9424
INFO:root:[Epoch 6 Batch 7700/12276] loss=0.1529, lr=0.0000046, metrics:accuracy:0.9425
INFO:root:[Epoch 6 Batch 7800/12276] loss=0.1802, lr=0.0000046, metrics:accuracy:0.9424
INFO:root:[Epoch 6 Batch 7900/12276] loss=0.1538, lr=0.0000046, metrics:accuracy:0.9426
INFO:root:[Epoch 6 Batch 8000/12276] loss=0.1959, lr=0.0000046, metrics:accuracy:0.9424
INFO:root:[Epoch 6 Batch 8100/12276] loss=0.1697, lr=0.0000046, metrics:accuracy:0.9424
INFO:root:[Epoch 6 Batch 8200/12276] loss=0.1658, lr=0.0000046, metrics:accuracy:0.9425
INFO:root:[Epoch 6 Batch 8300/12276] loss=0.1694, lr=0.0000046, metrics:accuracy:0.9424
INFO:root:[Epoch 6 Batch 8400/12276] loss=0.1650, lr=0.0000046, metrics:accuracy:0.9424
INFO:root:[Epoch 6 Batch 8500/12276] loss=0.1719, lr=0.0000046, metrics:accuracy:0.9424
INFO:root:[Epoch 6 Batch 8600/12276] loss=0.1663, lr=0.0000046, metrics:accuracy:0.9424
INFO:root:[Epoch 6 Batch 8700/12276] loss=0.1804, lr=0.0000046, metrics:accuracy:0.9423
INFO:root:[Epoch 6 Batch 8800/12276] loss=0.1596, lr=0.0000046, metrics:accuracy:0.9423
INFO:root:[Epoch 6 Batch 8900/12276] loss=0.1876, lr=0.0000045, metrics:accuracy:0.9422
INFO:root:[Epoch 6 Batch 9000/12276] loss=0.1514, lr=0.0000045, metrics:accuracy:0.9422
INFO:root:[Epoch 6 Batch 9100/12276] loss=0.1514, lr=0.0000045, metrics:accuracy:0.9423
INFO:root:[Epoch 6 Batch 9200/12276] loss=0.1652, lr=0.0000045, metrics:accuracy:0.9423
INFO:root:[Epoch 6 Batch 9300/12276] loss=0.1707, lr=0.0000045, metrics:accuracy:0.9422
INFO:root:[Epoch 6 Batch 9400/12276] loss=0.1723, lr=0.0000045, metrics:accuracy:0.9422
INFO:root:[Epoch 6 Batch 9500/12276] loss=0.1719, lr=0.0000045, metrics:accuracy:0.9422
INFO:root:[Epoch 6 Batch 9600/12276] loss=0.1622, lr=0.0000045, metrics:accuracy:0.9422
INFO:root:[Epoch 6 Batch 9700/12276] loss=0.1615, lr=0.0000045, metrics:accuracy:0.9422
INFO:root:[Epoch 6 Batch 9800/12276] loss=0.1869, lr=0.0000045, metrics:accuracy:0.9421
INFO:root:[Epoch 6 Batch 9900/12276] loss=0.1771, lr=0.0000045, metrics:accuracy:0.9420
INFO:root:[Epoch 6 Batch 10000/12276] loss=0.1669, lr=0.0000045, metrics:accuracy:0.9420
INFO:root:[Epoch 6 Batch 10100/12276] loss=0.1714, lr=0.0000044, metrics:accuracy:0.9420
INFO:root:[Epoch 6 Batch 10200/12276] loss=0.1826, lr=0.0000044, metrics:accuracy:0.9419
INFO:root:[Epoch 6 Batch 10300/12276] loss=0.1641, lr=0.0000044, metrics:accuracy:0.9419
INFO:root:[Epoch 6 Batch 10400/12276] loss=0.1735, lr=0.0000044, metrics:accuracy:0.9419
INFO:root:[Epoch 6 Batch 10500/12276] loss=0.1855, lr=0.0000044, metrics:accuracy:0.9418
INFO:root:[Epoch 6 Batch 10600/12276] loss=0.1696, lr=0.0000044, metrics:accuracy:0.9418
INFO:root:[Epoch 6 Batch 10700/12276] loss=0.1782, lr=0.0000044, metrics:accuracy:0.9418
INFO:root:[Epoch 6 Batch 10800/12276] loss=0.1532, lr=0.0000044, metrics:accuracy:0.9418
INFO:root:[Epoch 6 Batch 10900/12276] loss=0.1793, lr=0.0000044, metrics:accuracy:0.9417
INFO:root:[Epoch 6 Batch 11000/12276] loss=0.1680, lr=0.0000044, metrics:accuracy:0.9417
INFO:root:[Epoch 6 Batch 11100/12276] loss=0.1732, lr=0.0000044, metrics:accuracy:0.9417
INFO:root:[Epoch 6 Batch 11200/12276] loss=0.1775, lr=0.0000043, metrics:accuracy:0.9416
INFO:root:[Epoch 6 Batch 11300/12276] loss=0.1552, lr=0.0000043, metrics:accuracy:0.9416
INFO:root:[Epoch 6 Batch 11400/12276] loss=0.1598, lr=0.0000043, metrics:accuracy:0.9417
INFO:root:[Epoch 6 Batch 11500/12276] loss=0.1807, lr=0.0000043, metrics:accuracy:0.9416
INFO:root:[Epoch 6 Batch 11600/12276] loss=0.1854, lr=0.0000043, metrics:accuracy:0.9415
INFO:root:[Epoch 6 Batch 11700/12276] loss=0.1653, lr=0.0000043, metrics:accuracy:0.9415
INFO:root:[Epoch 6 Batch 11800/12276] loss=0.1708, lr=0.0000043, metrics:accuracy:0.9415
INFO:root:[Epoch 6 Batch 11900/12276] loss=0.1686, lr=0.0000043, metrics:accuracy:0.9415
INFO:root:[Epoch 6 Batch 12000/12276] loss=0.1844, lr=0.0000043, metrics:accuracy:0.9414
INFO:root:[Epoch 6 Batch 12100/12276] loss=0.1664, lr=0.0000043, metrics:accuracy:0.9414
INFO:root:[Epoch 6 Batch 12200/12276] loss=0.1608, lr=0.0000043, metrics:accuracy:0.9415
INFO:root:Now we are doing evaluation on dev_matched with gpu(1).
INFO:root:[Batch 100/1227] loss=0.4476, metrics:accuracy:0.8675
INFO:root:[Batch 200/1227] loss=0.4832, metrics:accuracy:0.8662
INFO:root:[Batch 300/1227] loss=0.4672, metrics:accuracy:0.8683
INFO:root:[Batch 400/1227] loss=0.4602, metrics:accuracy:0.8725
INFO:root:[Batch 500/1227] loss=0.4812, metrics:accuracy:0.8738
INFO:root:[Batch 600/1227] loss=0.4100, metrics:accuracy:0.8767
INFO:root:[Batch 700/1227] loss=0.5177, metrics:accuracy:0.8739
INFO:root:[Batch 800/1227] loss=0.4583, metrics:accuracy:0.8756
INFO:root:[Batch 900/1227] loss=0.4306, metrics:accuracy:0.8758
INFO:root:[Batch 1000/1227] loss=0.5124, metrics:accuracy:0.8736
INFO:root:[Batch 1100/1227] loss=0.5245, metrics:accuracy:0.8730
INFO:root:[Batch 1200/1227] loss=0.5045, metrics:accuracy:0.8730
INFO:root:validation metrics:accuracy:0.8738
INFO:root:Time cost=27.04s, throughput=363.04 samples/s
INFO:root:Now we are doing evaluation on dev_mismatched with gpu(1).
INFO:root:[Batch 100/1229] loss=0.5452, metrics:accuracy:0.8625
INFO:root:[Batch 200/1229] loss=0.4795, metrics:accuracy:0.8631
INFO:root:[Batch 300/1229] loss=0.4656, metrics:accuracy:0.8688
INFO:root:[Batch 400/1229] loss=0.4844, metrics:accuracy:0.8694
INFO:root:[Batch 500/1229] loss=0.4685, metrics:accuracy:0.8708
INFO:root:[Batch 600/1229] loss=0.4526, metrics:accuracy:0.8727
INFO:root:[Batch 700/1229] loss=0.5438, metrics:accuracy:0.8691
INFO:root:[Batch 800/1229] loss=0.4401, metrics:accuracy:0.8686
INFO:root:[Batch 900/1229] loss=0.4934, metrics:accuracy:0.8686
INFO:root:[Batch 1000/1229] loss=0.4552, metrics:accuracy:0.8684
INFO:root:[Batch 1100/1229] loss=0.5071, metrics:accuracy:0.8685
INFO:root:[Batch 1200/1229] loss=0.5295, metrics:accuracy:0.8677
INFO:root:validation metrics:accuracy:0.8681
INFO:root:Time cost=26.70s, throughput=368.22 samples/s
INFO:root:params saved in: ./output_dir/model_bert_MNLI_5.params
INFO:root:Time cost=1805.46s
INFO:root:[Epoch 7 Batch 100/12276] loss=0.1285, lr=0.0000042, metrics:accuracy:0.9559
INFO:root:[Epoch 7 Batch 200/12276] loss=0.1515, lr=0.0000042, metrics:accuracy:0.9531
INFO:root:[Epoch 7 Batch 300/12276] loss=0.1303, lr=0.0000042, metrics:accuracy:0.9539
INFO:root:[Epoch 7 Batch 400/12276] loss=0.1401, lr=0.0000042, metrics:accuracy:0.9533
INFO:root:[Epoch 7 Batch 500/12276] loss=0.1327, lr=0.0000042, metrics:accuracy:0.9532
INFO:root:[Epoch 7 Batch 600/12276] loss=0.1373, lr=0.0000042, metrics:accuracy:0.9529
INFO:root:[Epoch 7 Batch 700/12276] loss=0.1508, lr=0.0000042, metrics:accuracy:0.9530
INFO:root:[Epoch 7 Batch 800/12276] loss=0.1445, lr=0.0000042, metrics:accuracy:0.9529
INFO:root:[Epoch 7 Batch 900/12276] loss=0.1487, lr=0.0000042, metrics:accuracy:0.9527
INFO:root:[Epoch 7 Batch 1000/12276] loss=0.1329, lr=0.0000042, metrics:accuracy:0.9528
INFO:root:[Epoch 7 Batch 1100/12276] loss=0.1593, lr=0.0000042, metrics:accuracy:0.9521
INFO:root:[Epoch 7 Batch 1200/12276] loss=0.1403, lr=0.0000041, metrics:accuracy:0.9521
INFO:root:[Epoch 7 Batch 1300/12276] loss=0.1259, lr=0.0000041, metrics:accuracy:0.9526
INFO:root:[Epoch 7 Batch 1400/12276] loss=0.1435, lr=0.0000041, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 1500/12276] loss=0.1484, lr=0.0000041, metrics:accuracy:0.9521
INFO:root:[Epoch 7 Batch 1600/12276] loss=0.1482, lr=0.0000041, metrics:accuracy:0.9521
INFO:root:[Epoch 7 Batch 1700/12276] loss=0.1440, lr=0.0000041, metrics:accuracy:0.9522
INFO:root:[Epoch 7 Batch 1800/12276] loss=0.1384, lr=0.0000041, metrics:accuracy:0.9522
INFO:root:[Epoch 7 Batch 1900/12276] loss=0.1542, lr=0.0000041, metrics:accuracy:0.9520
INFO:root:[Epoch 7 Batch 2000/12276] loss=0.1574, lr=0.0000041, metrics:accuracy:0.9518
INFO:root:[Epoch 7 Batch 2100/12276] loss=0.1436, lr=0.0000041, metrics:accuracy:0.9518
INFO:root:[Epoch 7 Batch 2200/12276] loss=0.1251, lr=0.0000041, metrics:accuracy:0.9521
INFO:root:[Epoch 7 Batch 2300/12276] loss=0.1311, lr=0.0000041, metrics:accuracy:0.9522
INFO:root:[Epoch 7 Batch 2400/12276] loss=0.1333, lr=0.0000040, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 2500/12276] loss=0.1308, lr=0.0000040, metrics:accuracy:0.9526
INFO:root:[Epoch 7 Batch 2600/12276] loss=0.1455, lr=0.0000040, metrics:accuracy:0.9525
INFO:root:[Epoch 7 Batch 2700/12276] loss=0.1423, lr=0.0000040, metrics:accuracy:0.9525
INFO:root:[Epoch 7 Batch 2800/12276] loss=0.1455, lr=0.0000040, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 2900/12276] loss=0.1408, lr=0.0000040, metrics:accuracy:0.9525
INFO:root:[Epoch 7 Batch 3000/12276] loss=0.1498, lr=0.0000040, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 3100/12276] loss=0.1578, lr=0.0000040, metrics:accuracy:0.9522
INFO:root:[Epoch 7 Batch 3200/12276] loss=0.1383, lr=0.0000040, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 3300/12276] loss=0.1664, lr=0.0000040, metrics:accuracy:0.9521
INFO:root:[Epoch 7 Batch 3400/12276] loss=0.1310, lr=0.0000040, metrics:accuracy:0.9521
INFO:root:[Epoch 7 Batch 3500/12276] loss=0.1466, lr=0.0000039, metrics:accuracy:0.9522
INFO:root:[Epoch 7 Batch 3600/12276] loss=0.1362, lr=0.0000039, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 3700/12276] loss=0.1440, lr=0.0000039, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 3800/12276] loss=0.1549, lr=0.0000039, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 3900/12276] loss=0.1278, lr=0.0000039, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 4000/12276] loss=0.1509, lr=0.0000039, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 4100/12276] loss=0.1447, lr=0.0000039, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 4200/12276] loss=0.1257, lr=0.0000039, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 4300/12276] loss=0.1358, lr=0.0000039, metrics:accuracy:0.9525
INFO:root:[Epoch 7 Batch 4400/12276] loss=0.1297, lr=0.0000039, metrics:accuracy:0.9525
INFO:root:[Epoch 7 Batch 4500/12276] loss=0.1622, lr=0.0000039, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 4600/12276] loss=0.1346, lr=0.0000039, metrics:accuracy:0.9525
INFO:root:[Epoch 7 Batch 4700/12276] loss=0.1541, lr=0.0000038, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 4800/12276] loss=0.1352, lr=0.0000038, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 4900/12276] loss=0.1429, lr=0.0000038, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 5000/12276] loss=0.1421, lr=0.0000038, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 5100/12276] loss=0.1569, lr=0.0000038, metrics:accuracy:0.9522
INFO:root:[Epoch 7 Batch 5200/12276] loss=0.1292, lr=0.0000038, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 5300/12276] loss=0.1383, lr=0.0000038, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 5400/12276] loss=0.1330, lr=0.0000038, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 5500/12276] loss=0.1465, lr=0.0000038, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 5600/12276] loss=0.1417, lr=0.0000038, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 5700/12276] loss=0.1370, lr=0.0000038, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 5800/12276] loss=0.1399, lr=0.0000038, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 5900/12276] loss=0.1380, lr=0.0000037, metrics:accuracy:0.9522
INFO:root:[Epoch 7 Batch 6000/12276] loss=0.1491, lr=0.0000037, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 6100/12276] loss=0.1334, lr=0.0000037, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 6200/12276] loss=0.1500, lr=0.0000037, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 6300/12276] loss=0.1592, lr=0.0000037, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 6400/12276] loss=0.1468, lr=0.0000037, metrics:accuracy:0.9522
INFO:root:[Epoch 7 Batch 6500/12276] loss=0.1307, lr=0.0000037, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 6600/12276] loss=0.1441, lr=0.0000037, metrics:accuracy:0.9522
INFO:root:[Epoch 7 Batch 6700/12276] loss=0.1378, lr=0.0000037, metrics:accuracy:0.9522
INFO:root:[Epoch 7 Batch 6800/12276] loss=0.1347, lr=0.0000037, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 6900/12276] loss=0.1559, lr=0.0000037, metrics:accuracy:0.9522
INFO:root:[Epoch 7 Batch 7000/12276] loss=0.1361, lr=0.0000036, metrics:accuracy:0.9522
INFO:root:[Epoch 7 Batch 7100/12276] loss=0.1622, lr=0.0000036, metrics:accuracy:0.9521
INFO:root:[Epoch 7 Batch 7200/12276] loss=0.1376, lr=0.0000036, metrics:accuracy:0.9521
INFO:root:[Epoch 7 Batch 7300/12276] loss=0.1462, lr=0.0000036, metrics:accuracy:0.9521