Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
INFO:root:Namespace(accumulate=None, batch_size=32, bert_dataset='openwebtext_ccnews_stories_books_cased', bert_model='roberta_12_768_12', dev_batch_size=8, dtype='float32', early_stop=2, epochs=10, epsilon=1e-06, gpu=1, log_interval=100, lr=1e-05, max_len=128, model_parameters=None, only_inference=False, output_dir='./output_dir', pad=False, pretrained_bert_parameters=None, seed=2, task_name='MNLI', warmup_ratio=0.06)
INFO:root:processing dataset...
INFO:root:Now we are doing BERT classification training on gpu(1)!
INFO:root:[Epoch 1 Batch 100/12276] loss=1.1039, lr=0.0000001, metrics:accuracy:0.3291
INFO:root:[Epoch 1 Batch 200/12276] loss=1.1012, lr=0.0000003, metrics:accuracy:0.3330
INFO:root:[Epoch 1 Batch 300/12276] loss=1.1005, lr=0.0000004, metrics:accuracy:0.3308
INFO:root:[Epoch 1 Batch 400/12276] loss=1.0980, lr=0.0000005, metrics:accuracy:0.3348
INFO:root:[Epoch 1 Batch 500/12276] loss=1.0981, lr=0.0000007, metrics:accuracy:0.3359
INFO:root:[Epoch 1 Batch 600/12276] loss=1.0958, lr=0.0000008, metrics:accuracy:0.3404
INFO:root:[Epoch 1 Batch 700/12276] loss=1.0821, lr=0.0000009, metrics:accuracy:0.3533
INFO:root:[Epoch 1 Batch 800/12276] loss=1.0386, lr=0.0000011, metrics:accuracy:0.3716
INFO:root:[Epoch 1 Batch 900/12276] loss=0.9773, lr=0.0000012, metrics:accuracy:0.3929
INFO:root:[Epoch 1 Batch 1000/12276] loss=0.9240, lr=0.0000014, metrics:accuracy:0.4135
INFO:root:[Epoch 1 Batch 1100/12276] loss=0.8182, lr=0.0000015, metrics:accuracy:0.4356
INFO:root:[Epoch 1 Batch 1200/12276] loss=0.7256, lr=0.0000016, metrics:accuracy:0.4573
INFO:root:[Epoch 1 Batch 1300/12276] loss=0.6907, lr=0.0000018, metrics:accuracy:0.4773
INFO:root:[Epoch 1 Batch 1400/12276] loss=0.6693, lr=0.0000019, metrics:accuracy:0.4950
INFO:root:[Epoch 1 Batch 1500/12276] loss=0.6349, lr=0.0000020, metrics:accuracy:0.5118
INFO:root:[Epoch 1 Batch 1600/12276] loss=0.6293, lr=0.0000022, metrics:accuracy:0.5263
INFO:root:[Epoch 1 Batch 1700/12276] loss=0.6123, lr=0.0000023, metrics:accuracy:0.5395
INFO:root:[Epoch 1 Batch 1800/12276] loss=0.6283, lr=0.0000024, metrics:accuracy:0.5510
INFO:root:[Epoch 1 Batch 1900/12276] loss=0.5676, lr=0.0000026, metrics:accuracy:0.5630
INFO:root:[Epoch 1 Batch 2000/12276] loss=0.5814, lr=0.0000027, metrics:accuracy:0.5737
INFO:root:[Epoch 1 Batch 2100/12276] loss=0.5815, lr=0.0000029, metrics:accuracy:0.5831
INFO:root:[Epoch 1 Batch 2200/12276] loss=0.5744, lr=0.0000030, metrics:accuracy:0.5917
INFO:root:[Epoch 1 Batch 2300/12276] loss=0.5658, lr=0.0000031, metrics:accuracy:0.5994
INFO:root:[Epoch 1 Batch 2400/12276] loss=0.5659, lr=0.0000033, metrics:accuracy:0.6064
INFO:root:[Epoch 1 Batch 2500/12276] loss=0.5626, lr=0.0000034, metrics:accuracy:0.6130
INFO:root:[Epoch 1 Batch 2600/12276] loss=0.5488, lr=0.0000035, metrics:accuracy:0.6197
INFO:root:[Epoch 1 Batch 2700/12276] loss=0.5517, lr=0.0000037, metrics:accuracy:0.6258
INFO:root:[Epoch 1 Batch 2800/12276] loss=0.5469, lr=0.0000038, metrics:accuracy:0.6317
INFO:root:[Epoch 1 Batch 2900/12276] loss=0.5323, lr=0.0000039, metrics:accuracy:0.6369
INFO:root:[Epoch 1 Batch 3000/12276] loss=0.5350, lr=0.0000041, metrics:accuracy:0.6418
INFO:root:[Epoch 1 Batch 3100/12276] loss=0.5232, lr=0.0000042, metrics:accuracy:0.6469
INFO:root:[Epoch 1 Batch 3200/12276] loss=0.5407, lr=0.0000043, metrics:accuracy:0.6511
INFO:root:[Epoch 1 Batch 3300/12276] loss=0.5536, lr=0.0000045, metrics:accuracy:0.6552
INFO:root:[Epoch 1 Batch 3400/12276] loss=0.4970, lr=0.0000046, metrics:accuracy:0.6598
INFO:root:[Epoch 1 Batch 3500/12276] loss=0.5200, lr=0.0000048, metrics:accuracy:0.6637
INFO:root:[Epoch 1 Batch 3600/12276] loss=0.5221, lr=0.0000049, metrics:accuracy:0.6674
INFO:root:[Epoch 1 Batch 3700/12276] loss=0.4897, lr=0.0000050, metrics:accuracy:0.6711
INFO:root:[Epoch 1 Batch 3800/12276] loss=0.5068, lr=0.0000052, metrics:accuracy:0.6746
INFO:root:[Epoch 1 Batch 3900/12276] loss=0.4994, lr=0.0000053, metrics:accuracy:0.6779
INFO:root:[Epoch 1 Batch 4000/12276] loss=0.4986, lr=0.0000054, metrics:accuracy:0.6811
INFO:root:[Epoch 1 Batch 4100/12276] loss=0.4893, lr=0.0000056, metrics:accuracy:0.6842
INFO:root:[Epoch 1 Batch 4200/12276] loss=0.5023, lr=0.0000057, metrics:accuracy:0.6871
INFO:root:[Epoch 1 Batch 4300/12276] loss=0.4717, lr=0.0000058, metrics:accuracy:0.6902
INFO:root:[Epoch 1 Batch 4400/12276] loss=0.5117, lr=0.0000060, metrics:accuracy:0.6927
INFO:root:[Epoch 1 Batch 4500/12276] loss=0.4813, lr=0.0000061, metrics:accuracy:0.6954
INFO:root:[Epoch 1 Batch 4600/12276] loss=0.5090, lr=0.0000062, metrics:accuracy:0.6978
INFO:root:[Epoch 1 Batch 4700/12276] loss=0.5112, lr=0.0000064, metrics:accuracy:0.6999
INFO:root:[Epoch 1 Batch 4800/12276] loss=0.4676, lr=0.0000065, metrics:accuracy:0.7024
INFO:root:[Epoch 1 Batch 4900/12276] loss=0.4764, lr=0.0000067, metrics:accuracy:0.7048
INFO:root:[Epoch 1 Batch 5000/12276] loss=0.4861, lr=0.0000068, metrics:accuracy:0.7069
INFO:root:[Epoch 1 Batch 5100/12276] loss=0.4812, lr=0.0000069, metrics:accuracy:0.7089
INFO:root:[Epoch 1 Batch 5200/12276] loss=0.4974, lr=0.0000071, metrics:accuracy:0.7108
INFO:root:[Epoch 1 Batch 5300/12276] loss=0.4728, lr=0.0000072, metrics:accuracy:0.7128
INFO:root:[Epoch 1 Batch 5400/12276] loss=0.4472, lr=0.0000073, metrics:accuracy:0.7148
INFO:root:[Epoch 1 Batch 5500/12276] loss=0.4800, lr=0.0000075, metrics:accuracy:0.7166
INFO:root:[Epoch 1 Batch 5600/12276] loss=0.4498, lr=0.0000076, metrics:accuracy:0.7185
INFO:root:[Epoch 1 Batch 5700/12276] loss=0.4731, lr=0.0000077, metrics:accuracy:0.7201
INFO:root:[Epoch 1 Batch 5800/12276] loss=0.4604, lr=0.0000079, metrics:accuracy:0.7220
INFO:root:[Epoch 1 Batch 5900/12276] loss=0.4744, lr=0.0000080, metrics:accuracy:0.7236
INFO:root:[Epoch 1 Batch 6000/12276] loss=0.4721, lr=0.0000081, metrics:accuracy:0.7252
INFO:root:[Epoch 1 Batch 6100/12276] loss=0.4368, lr=0.0000083, metrics:accuracy:0.7270
INFO:root:[Epoch 1 Batch 6200/12276] loss=0.4749, lr=0.0000084, metrics:accuracy:0.7284
INFO:root:[Epoch 1 Batch 6300/12276] loss=0.4409, lr=0.0000086, metrics:accuracy:0.7300
INFO:root:[Epoch 1 Batch 6400/12276] loss=0.4502, lr=0.0000087, metrics:accuracy:0.7316
INFO:root:[Epoch 1 Batch 6500/12276] loss=0.4902, lr=0.0000088, metrics:accuracy:0.7328
INFO:root:[Epoch 1 Batch 6600/12276] loss=0.4378, lr=0.0000090, metrics:accuracy:0.7342
INFO:root:[Epoch 1 Batch 6700/12276] loss=0.4382, lr=0.0000091, metrics:accuracy:0.7356
INFO:root:[Epoch 1 Batch 6800/12276] loss=0.4451, lr=0.0000092, metrics:accuracy:0.7370
INFO:root:[Epoch 1 Batch 6900/12276] loss=0.4456, lr=0.0000094, metrics:accuracy:0.7383
INFO:root:[Epoch 1 Batch 7000/12276] loss=0.4331, lr=0.0000095, metrics:accuracy:0.7397
INFO:root:[Epoch 1 Batch 7100/12276] loss=0.4591, lr=0.0000096, metrics:accuracy:0.7409
INFO:root:[Epoch 1 Batch 7200/12276] loss=0.4467, lr=0.0000098, metrics:accuracy:0.7422
INFO:root:[Epoch 1 Batch 7300/12276] loss=0.4373, lr=0.0000099, metrics:accuracy:0.7435
INFO:root:[Epoch 1 Batch 7400/12276] loss=0.4459, lr=0.0000100, metrics:accuracy:0.7446
INFO:root:[Epoch 1 Batch 7500/12276] loss=0.4277, lr=0.0000100, metrics:accuracy:0.7459
INFO:root:[Epoch 1 Batch 7600/12276] loss=0.4464, lr=0.0000100, metrics:accuracy:0.7470
INFO:root:[Epoch 1 Batch 7700/12276] loss=0.4371, lr=0.0000100, metrics:accuracy:0.7481
INFO:root:[Epoch 1 Batch 7800/12276] loss=0.4309, lr=0.0000100, metrics:accuracy:0.7492
INFO:root:[Epoch 1 Batch 7900/12276] loss=0.4617, lr=0.0000100, metrics:accuracy:0.7502
INFO:root:[Epoch 1 Batch 8000/12276] loss=0.4507, lr=0.0000099, metrics:accuracy:0.7511
INFO:root:[Epoch 1 Batch 8100/12276] loss=0.4604, lr=0.0000099, metrics:accuracy:0.7520
INFO:root:[Epoch 1 Batch 8200/12276] loss=0.4550, lr=0.0000099, metrics:accuracy:0.7530
INFO:root:[Epoch 1 Batch 8300/12276] loss=0.4407, lr=0.0000099, metrics:accuracy:0.7539
INFO:root:[Epoch 1 Batch 8400/12276] loss=0.4407, lr=0.0000099, metrics:accuracy:0.7548
INFO:root:[Epoch 1 Batch 8500/12276] loss=0.4221, lr=0.0000099, metrics:accuracy:0.7558
INFO:root:[Epoch 1 Batch 8600/12276] loss=0.4161, lr=0.0000099, metrics:accuracy:0.7569
INFO:root:[Epoch 1 Batch 8700/12276] loss=0.4299, lr=0.0000099, metrics:accuracy:0.7578
INFO:root:[Epoch 1 Batch 8800/12276] loss=0.4453, lr=0.0000099, metrics:accuracy:0.7586
INFO:root:[Epoch 1 Batch 8900/12276] loss=0.4388, lr=0.0000099, metrics:accuracy:0.7594
INFO:root:[Epoch 1 Batch 9000/12276] loss=0.4167, lr=0.0000099, metrics:accuracy:0.7602
INFO:root:[Epoch 1 Batch 9100/12276] loss=0.4537, lr=0.0000098, metrics:accuracy:0.7610
INFO:root:[Epoch 1 Batch 9200/12276] loss=0.4285, lr=0.0000098, metrics:accuracy:0.7618
INFO:root:[Epoch 1 Batch 9300/12276] loss=0.4278, lr=0.0000098, metrics:accuracy:0.7626
INFO:root:[Epoch 1 Batch 9400/12276] loss=0.4295, lr=0.0000098, metrics:accuracy:0.7633
INFO:root:[Epoch 1 Batch 9500/12276] loss=0.4236, lr=0.0000098, metrics:accuracy:0.7642
INFO:root:[Epoch 1 Batch 9600/12276] loss=0.4172, lr=0.0000098, metrics:accuracy:0.7649
INFO:root:[Epoch 1 Batch 9700/12276] loss=0.4341, lr=0.0000098, metrics:accuracy:0.7656
INFO:root:[Epoch 1 Batch 9800/12276] loss=0.4149, lr=0.0000098, metrics:accuracy:0.7664
INFO:root:[Epoch 1 Batch 9900/12276] loss=0.4204, lr=0.0000098, metrics:accuracy:0.7671
INFO:root:[Epoch 1 Batch 10000/12276] loss=0.4319, lr=0.0000098, metrics:accuracy:0.7678
INFO:root:[Epoch 1 Batch 10100/12276] loss=0.4398, lr=0.0000098, metrics:accuracy:0.7685
INFO:root:[Epoch 1 Batch 10200/12276] loss=0.4171, lr=0.0000098, metrics:accuracy:0.7692
INFO:root:[Epoch 1 Batch 10300/12276] loss=0.4410, lr=0.0000097, metrics:accuracy:0.7698
INFO:root:[Epoch 1 Batch 10400/12276] loss=0.4342, lr=0.0000097, metrics:accuracy:0.7703
INFO:root:[Epoch 1 Batch 10500/12276] loss=0.3955, lr=0.0000097, metrics:accuracy:0.7711
INFO:root:[Epoch 1 Batch 10600/12276] loss=0.4218, lr=0.0000097, metrics:accuracy:0.7717
INFO:root:[Epoch 1 Batch 10700/12276] loss=0.4237, lr=0.0000097, metrics:accuracy:0.7723
INFO:root:[Epoch 1 Batch 10800/12276] loss=0.4469, lr=0.0000097, metrics:accuracy:0.7729
INFO:root:[Epoch 1 Batch 10900/12276] loss=0.3999, lr=0.0000097, metrics:accuracy:0.7736
INFO:root:[Epoch 1 Batch 11000/12276] loss=0.4282, lr=0.0000097, metrics:accuracy:0.7742
INFO:root:[Epoch 1 Batch 11100/12276] loss=0.4364, lr=0.0000097, metrics:accuracy:0.7747
INFO:root:[Epoch 1 Batch 11200/12276] loss=0.4268, lr=0.0000097, metrics:accuracy:0.7753
INFO:root:[Epoch 1 Batch 11300/12276] loss=0.4296, lr=0.0000097, metrics:accuracy:0.7757
INFO:root:[Epoch 1 Batch 11400/12276] loss=0.4174, lr=0.0000097, metrics:accuracy:0.7763
INFO:root:[Epoch 1 Batch 11500/12276] loss=0.4384, lr=0.0000096, metrics:accuracy:0.7768
INFO:root:[Epoch 1 Batch 11600/12276] loss=0.4159, lr=0.0000096, metrics:accuracy:0.7774
INFO:root:[Epoch 1 Batch 11700/12276] loss=0.4158, lr=0.0000096, metrics:accuracy:0.7779
INFO:root:[Epoch 1 Batch 11800/12276] loss=0.4184, lr=0.0000096, metrics:accuracy:0.7784
INFO:root:[Epoch 1 Batch 11900/12276] loss=0.3994, lr=0.0000096, metrics:accuracy:0.7790
INFO:root:[Epoch 1 Batch 12000/12276] loss=0.4095, lr=0.0000096, metrics:accuracy:0.7795
INFO:root:[Epoch 1 Batch 12100/12276] loss=0.4102, lr=0.0000096, metrics:accuracy:0.7800
INFO:root:[Epoch 1 Batch 12200/12276] loss=0.4239, lr=0.0000096, metrics:accuracy:0.7805
INFO:root:Now we are doing evaluation on dev_matched with gpu(1).
INFO:root:[Batch 100/1227] loss=0.3688, metrics:accuracy:0.8488
INFO:root:[Batch 200/1227] loss=0.3771, metrics:accuracy:0.8494
INFO:root:[Batch 300/1227] loss=0.3672, metrics:accuracy:0.8492
INFO:root:[Batch 400/1227] loss=0.3620, metrics:accuracy:0.8541
INFO:root:[Batch 500/1227] loss=0.4019, metrics:accuracy:0.8515
INFO:root:[Batch 600/1227] loss=0.3577, metrics:accuracy:0.8529
INFO:root:[Batch 700/1227] loss=0.3836, metrics:accuracy:0.8521
INFO:root:[Batch 800/1227] loss=0.3567, metrics:accuracy:0.8531
INFO:root:[Batch 900/1227] loss=0.3763, metrics:accuracy:0.8524
INFO:root:[Batch 1000/1227] loss=0.4307, metrics:accuracy:0.8502
INFO:root:[Batch 1100/1227] loss=0.4051, metrics:accuracy:0.8493
INFO:root:[Batch 1200/1227] loss=0.3847, metrics:accuracy:0.8490
INFO:root:validation metrics:accuracy:0.8493
INFO:root:Time cost=29.24s, throughput=335.69 samples/s
INFO:root:Now we are doing evaluation on dev_mismatched with gpu(1).
INFO:root:[Batch 100/1229] loss=0.3697, metrics:accuracy:0.8650
INFO:root:[Batch 200/1229] loss=0.3680, metrics:accuracy:0.8612
INFO:root:[Batch 300/1229] loss=0.3427, metrics:accuracy:0.8629
INFO:root:[Batch 400/1229] loss=0.3698, metrics:accuracy:0.8609
INFO:root:[Batch 500/1229] loss=0.3766, metrics:accuracy:0.8580
INFO:root:[Batch 600/1229] loss=0.3354, metrics:accuracy:0.8617
INFO:root:[Batch 700/1229] loss=0.3854, metrics:accuracy:0.8604
INFO:root:[Batch 800/1229] loss=0.3645, metrics:accuracy:0.8591
INFO:root:[Batch 900/1229] loss=0.3898, metrics:accuracy:0.8575
INFO:root:[Batch 1000/1229] loss=0.3571, metrics:accuracy:0.8591
INFO:root:[Batch 1100/1229] loss=0.4014, metrics:accuracy:0.8592
INFO:root:[Batch 1200/1229] loss=0.3778, metrics:accuracy:0.8586
INFO:root:validation metrics:accuracy:0.8590
INFO:root:Time cost=28.82s, throughput=341.15 samples/s
INFO:root:params saved in: ./output_dir/model_bert_MNLI_0.params
INFO:root:Time cost=1893.16s
INFO:root:[Epoch 2 Batch 100/12276] loss=0.3709, lr=0.0000096, metrics:accuracy:0.8591
INFO:root:[Epoch 2 Batch 200/12276] loss=0.3655, lr=0.0000096, metrics:accuracy:0.8609
INFO:root:[Epoch 2 Batch 300/12276] loss=0.3820, lr=0.0000095, metrics:accuracy:0.8588
INFO:root:[Epoch 2 Batch 400/12276] loss=0.3815, lr=0.0000095, metrics:accuracy:0.8584
INFO:root:[Epoch 2 Batch 500/12276] loss=0.3783, lr=0.0000095, metrics:accuracy:0.8589
INFO:root:[Epoch 2 Batch 600/12276] loss=0.3787, lr=0.0000095, metrics:accuracy:0.8586
INFO:root:[Epoch 2 Batch 700/12276] loss=0.3625, lr=0.0000095, metrics:accuracy:0.8599
INFO:root:[Epoch 2 Batch 800/12276] loss=0.3625, lr=0.0000095, metrics:accuracy:0.8610
INFO:root:[Epoch 2 Batch 900/12276] loss=0.3586, lr=0.0000095, metrics:accuracy:0.8618
INFO:root:[Epoch 2 Batch 1000/12276] loss=0.3607, lr=0.0000095, metrics:accuracy:0.8618
INFO:root:[Epoch 2 Batch 1100/12276] loss=0.3851, lr=0.0000095, metrics:accuracy:0.8618
INFO:root:[Epoch 2 Batch 1200/12276] loss=0.3621, lr=0.0000095, metrics:accuracy:0.8619
INFO:root:[Epoch 2 Batch 1300/12276] loss=0.3662, lr=0.0000095, metrics:accuracy:0.8621
INFO:root:[Epoch 2 Batch 1400/12276] loss=0.3744, lr=0.0000095, metrics:accuracy:0.8619
INFO:root:[Epoch 2 Batch 1500/12276] loss=0.3521, lr=0.0000094, metrics:accuracy:0.8626
INFO:root:[Epoch 2 Batch 1600/12276] loss=0.3788, lr=0.0000094, metrics:accuracy:0.8625
INFO:root:[Epoch 2 Batch 1700/12276] loss=0.3721, lr=0.0000094, metrics:accuracy:0.8624
INFO:root:[Epoch 2 Batch 1800/12276] loss=0.3871, lr=0.0000094, metrics:accuracy:0.8617
INFO:root:[Epoch 2 Batch 1900/12276] loss=0.3685, lr=0.0000094, metrics:accuracy:0.8618
INFO:root:[Epoch 2 Batch 2000/12276] loss=0.3705, lr=0.0000094, metrics:accuracy:0.8618
INFO:root:[Epoch 2 Batch 2100/12276] loss=0.3677, lr=0.0000094, metrics:accuracy:0.8618
INFO:root:[Epoch 2 Batch 2200/12276] loss=0.3789, lr=0.0000094, metrics:accuracy:0.8614
INFO:root:[Epoch 2 Batch 2300/12276] loss=0.3630, lr=0.0000094, metrics:accuracy:0.8616
INFO:root:[Epoch 2 Batch 2400/12276] loss=0.3740, lr=0.0000094, metrics:accuracy:0.8615
INFO:root:[Epoch 2 Batch 2500/12276] loss=0.3796, lr=0.0000094, metrics:accuracy:0.8613
INFO:root:[Epoch 2 Batch 2600/12276] loss=0.3706, lr=0.0000093, metrics:accuracy:0.8612
INFO:root:[Epoch 2 Batch 2700/12276] loss=0.3725, lr=0.0000093, metrics:accuracy:0.8612
INFO:root:[Epoch 2 Batch 2800/12276] loss=0.3485, lr=0.0000093, metrics:accuracy:0.8614
INFO:root:[Epoch 2 Batch 2900/12276] loss=0.3472, lr=0.0000093, metrics:accuracy:0.8618
INFO:root:[Epoch 2 Batch 3000/12276] loss=0.3516, lr=0.0000093, metrics:accuracy:0.8621
INFO:root:[Epoch 2 Batch 3100/12276] loss=0.3697, lr=0.0000093, metrics:accuracy:0.8620
INFO:root:[Epoch 2 Batch 3200/12276] loss=0.3855, lr=0.0000093, metrics:accuracy:0.8619
INFO:root:[Epoch 2 Batch 3300/12276] loss=0.3818, lr=0.0000093, metrics:accuracy:0.8617
INFO:root:[Epoch 2 Batch 3400/12276] loss=0.3461, lr=0.0000093, metrics:accuracy:0.8620
INFO:root:[Epoch 2 Batch 3500/12276] loss=0.3447, lr=0.0000093, metrics:accuracy:0.8624
INFO:root:[Epoch 2 Batch 3600/12276] loss=0.3545, lr=0.0000093, metrics:accuracy:0.8627
INFO:root:[Epoch 2 Batch 3700/12276] loss=0.3412, lr=0.0000093, metrics:accuracy:0.8629
INFO:root:[Epoch 2 Batch 3800/12276] loss=0.3631, lr=0.0000092, metrics:accuracy:0.8630
INFO:root:[Epoch 2 Batch 3900/12276] loss=0.3804, lr=0.0000092, metrics:accuracy:0.8627
INFO:root:[Epoch 2 Batch 4000/12276] loss=0.3667, lr=0.0000092, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 4100/12276] loss=0.3690, lr=0.0000092, metrics:accuracy:0.8626
INFO:root:[Epoch 2 Batch 4200/12276] loss=0.3557, lr=0.0000092, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 4300/12276] loss=0.3729, lr=0.0000092, metrics:accuracy:0.8626
INFO:root:[Epoch 2 Batch 4400/12276] loss=0.3671, lr=0.0000092, metrics:accuracy:0.8625
INFO:root:[Epoch 2 Batch 4500/12276] loss=0.3577, lr=0.0000092, metrics:accuracy:0.8626
INFO:root:[Epoch 2 Batch 4600/12276] loss=0.3662, lr=0.0000092, metrics:accuracy:0.8625
INFO:root:[Epoch 2 Batch 4700/12276] loss=0.3553, lr=0.0000092, metrics:accuracy:0.8626
INFO:root:[Epoch 2 Batch 4800/12276] loss=0.3418, lr=0.0000092, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 4900/12276] loss=0.3878, lr=0.0000091, metrics:accuracy:0.8626
INFO:root:[Epoch 2 Batch 5000/12276] loss=0.3588, lr=0.0000091, metrics:accuracy:0.8626
INFO:root:[Epoch 2 Batch 5100/12276] loss=0.3577, lr=0.0000091, metrics:accuracy:0.8625
INFO:root:[Epoch 2 Batch 5200/12276] loss=0.3558, lr=0.0000091, metrics:accuracy:0.8626
INFO:root:[Epoch 2 Batch 5300/12276] loss=0.3498, lr=0.0000091, metrics:accuracy:0.8627
INFO:root:[Epoch 2 Batch 5400/12276] loss=0.3774, lr=0.0000091, metrics:accuracy:0.8627
INFO:root:[Epoch 2 Batch 5500/12276] loss=0.3519, lr=0.0000091, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 5600/12276] loss=0.3807, lr=0.0000091, metrics:accuracy:0.8626
INFO:root:[Epoch 2 Batch 5700/12276] loss=0.3395, lr=0.0000091, metrics:accuracy:0.8627
INFO:root:[Epoch 2 Batch 5800/12276] loss=0.3560, lr=0.0000091, metrics:accuracy:0.8627
INFO:root:[Epoch 2 Batch 5900/12276] loss=0.3565, lr=0.0000091, metrics:accuracy:0.8627
INFO:root:[Epoch 2 Batch 6000/12276] loss=0.3682, lr=0.0000091, metrics:accuracy:0.8627
INFO:root:[Epoch 2 Batch 6100/12276] loss=0.3618, lr=0.0000090, metrics:accuracy:0.8627
INFO:root:[Epoch 2 Batch 6200/12276] loss=0.3410, lr=0.0000090, metrics:accuracy:0.8629
INFO:root:[Epoch 2 Batch 6300/12276] loss=0.3646, lr=0.0000090, metrics:accuracy:0.8629
INFO:root:[Epoch 2 Batch 6400/12276] loss=0.3624, lr=0.0000090, metrics:accuracy:0.8629
INFO:root:[Epoch 2 Batch 6500/12276] loss=0.3765, lr=0.0000090, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 6600/12276] loss=0.3516, lr=0.0000090, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 6700/12276] loss=0.3482, lr=0.0000090, metrics:accuracy:0.8630
INFO:root:[Epoch 2 Batch 6800/12276] loss=0.3683, lr=0.0000090, metrics:accuracy:0.8630
INFO:root:[Epoch 2 Batch 6900/12276] loss=0.3896, lr=0.0000090, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 7000/12276] loss=0.3540, lr=0.0000090, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 7100/12276] loss=0.3543, lr=0.0000090, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 7200/12276] loss=0.3738, lr=0.0000090, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 7300/12276] loss=0.3404, lr=0.0000089, metrics:accuracy:0.8630
INFO:root:[Epoch 2 Batch 7400/12276] loss=0.3727, lr=0.0000089, metrics:accuracy:0.8629
INFO:root:[Epoch 2 Batch 7500/12276] loss=0.3471, lr=0.0000089, metrics:accuracy:0.8631
INFO:root:[Epoch 2 Batch 7600/12276] loss=0.3817, lr=0.0000089, metrics:accuracy:0.8630
INFO:root:[Epoch 2 Batch 7700/12276] loss=0.3802, lr=0.0000089, metrics:accuracy:0.8630
INFO:root:[Epoch 2 Batch 7800/12276] loss=0.3699, lr=0.0000089, metrics:accuracy:0.8629
INFO:root:[Epoch 2 Batch 7900/12276] loss=0.3811, lr=0.0000089, metrics:accuracy:0.8627
INFO:root:[Epoch 2 Batch 8000/12276] loss=0.3582, lr=0.0000089, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 8100/12276] loss=0.3673, lr=0.0000089, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 8200/12276] loss=0.3734, lr=0.0000089, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 8300/12276] loss=0.3527, lr=0.0000089, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 8400/12276] loss=0.3424, lr=0.0000088, metrics:accuracy:0.8629
INFO:root:[Epoch 2 Batch 8500/12276] loss=0.3587, lr=0.0000088, metrics:accuracy:0.8629
INFO:root:[Epoch 2 Batch 8600/12276] loss=0.3786, lr=0.0000088, metrics:accuracy:0.8628
INFO:root:[Epoch 2 Batch 8700/12276] loss=0.3336, lr=0.0000088, metrics:accuracy:0.8629
INFO:root:[Epoch 2 Batch 8800/12276] loss=0.3401, lr=0.0000088, metrics:accuracy:0.8630
INFO:root:[Epoch 2 Batch 8900/12276] loss=0.3720, lr=0.0000088, metrics:accuracy:0.8630
INFO:root:[Epoch 2 Batch 9000/12276] loss=0.3604, lr=0.0000088, metrics:accuracy:0.8630
INFO:root:[Epoch 2 Batch 9100/12276] loss=0.3653, lr=0.0000088, metrics:accuracy:0.8629
INFO:root:[Epoch 2 Batch 9200/12276] loss=0.3464, lr=0.0000088, metrics:accuracy:0.8630
INFO:root:[Epoch 2 Batch 9300/12276] loss=0.3604, lr=0.0000088, metrics:accuracy:0.8630
INFO:root:[Epoch 2 Batch 9400/12276] loss=0.3430, lr=0.0000088, metrics:accuracy:0.8631
INFO:root:[Epoch 2 Batch 9500/12276] loss=0.3504, lr=0.0000088, metrics:accuracy:0.8631
INFO:root:[Epoch 2 Batch 9600/12276] loss=0.3573, lr=0.0000087, metrics:accuracy:0.8631
INFO:root:[Epoch 2 Batch 9700/12276] loss=0.3592, lr=0.0000087, metrics:accuracy:0.8631
INFO:root:[Epoch 2 Batch 9800/12276] loss=0.3592, lr=0.0000087, metrics:accuracy:0.8631
INFO:root:[Epoch 2 Batch 9900/12276] loss=0.3502, lr=0.0000087, metrics:accuracy:0.8632
INFO:root:[Epoch 2 Batch 10000/12276] loss=0.3503, lr=0.0000087, metrics:accuracy:0.8632
INFO:root:[Epoch 2 Batch 10100/12276] loss=0.3532, lr=0.0000087, metrics:accuracy:0.8632
INFO:root:[Epoch 2 Batch 10200/12276] loss=0.3580, lr=0.0000087, metrics:accuracy:0.8632
INFO:root:[Epoch 2 Batch 10300/12276] loss=0.3729, lr=0.0000087, metrics:accuracy:0.8632
INFO:root:[Epoch 2 Batch 10400/12276] loss=0.3541, lr=0.0000087, metrics:accuracy:0.8633
INFO:root:[Epoch 2 Batch 10500/12276] loss=0.3752, lr=0.0000087, metrics:accuracy:0.8632
INFO:root:[Epoch 2 Batch 10600/12276] loss=0.3544, lr=0.0000087, metrics:accuracy:0.8633
INFO:root:[Epoch 2 Batch 10700/12276] loss=0.3697, lr=0.0000086, metrics:accuracy:0.8633
INFO:root:[Epoch 2 Batch 10800/12276] loss=0.3535, lr=0.0000086, metrics:accuracy:0.8633
INFO:root:[Epoch 2 Batch 10900/12276] loss=0.3475, lr=0.0000086, metrics:accuracy:0.8633
INFO:root:[Epoch 2 Batch 11000/12276] loss=0.3526, lr=0.0000086, metrics:accuracy:0.8633
INFO:root:[Epoch 2 Batch 11100/12276] loss=0.3675, lr=0.0000086, metrics:accuracy:0.8634
INFO:root:[Epoch 2 Batch 11200/12276] loss=0.3598, lr=0.0000086, metrics:accuracy:0.8634
INFO:root:[Epoch 2 Batch 11300/12276] loss=0.3446, lr=0.0000086, metrics:accuracy:0.8634
INFO:root:[Epoch 2 Batch 11400/12276] loss=0.3358, lr=0.0000086, metrics:accuracy:0.8635
INFO:root:[Epoch 2 Batch 11500/12276] loss=0.3629, lr=0.0000086, metrics:accuracy:0.8635
INFO:root:[Epoch 2 Batch 11600/12276] loss=0.3476, lr=0.0000086, metrics:accuracy:0.8635
INFO:root:[Epoch 2 Batch 11700/12276] loss=0.3636, lr=0.0000086, metrics:accuracy:0.8635
INFO:root:[Epoch 2 Batch 11800/12276] loss=0.3436, lr=0.0000086, metrics:accuracy:0.8635
INFO:root:[Epoch 2 Batch 11900/12276] loss=0.3557, lr=0.0000085, metrics:accuracy:0.8636
INFO:root:[Epoch 2 Batch 12000/12276] loss=0.3532, lr=0.0000085, metrics:accuracy:0.8636
INFO:root:[Epoch 2 Batch 12100/12276] loss=0.3424, lr=0.0000085, metrics:accuracy:0.8637
INFO:root:[Epoch 2 Batch 12200/12276] loss=0.3549, lr=0.0000085, metrics:accuracy:0.8637
INFO:root:Now we are doing evaluation on dev_matched with gpu(1).
INFO:root:[Batch 100/1227] loss=0.3512, metrics:accuracy:0.8650
INFO:root:[Batch 200/1227] loss=0.3524, metrics:accuracy:0.8694
INFO:root:[Batch 300/1227] loss=0.3682, metrics:accuracy:0.8667
INFO:root:[Batch 400/1227] loss=0.3543, metrics:accuracy:0.8703
INFO:root:[Batch 500/1227] loss=0.3803, metrics:accuracy:0.8702
INFO:root:[Batch 600/1227] loss=0.3181, metrics:accuracy:0.8725
INFO:root:[Batch 700/1227] loss=0.3654, metrics:accuracy:0.8705
INFO:root:[Batch 800/1227] loss=0.3277, metrics:accuracy:0.8723
INFO:root:[Batch 900/1227] loss=0.3540, metrics:accuracy:0.8718
INFO:root:[Batch 1000/1227] loss=0.4164, metrics:accuracy:0.8685
INFO:root:[Batch 1100/1227] loss=0.4181, metrics:accuracy:0.8668
INFO:root:[Batch 1200/1227] loss=0.3798, metrics:accuracy:0.8657
INFO:root:validation metrics:accuracy:0.8661
INFO:root:Time cost=27.41s, throughput=358.09 samples/s
INFO:root:Now we are doing evaluation on dev_mismatched with gpu(1).
INFO:root:[Batch 100/1229] loss=0.3907, metrics:accuracy:0.8612
INFO:root:[Batch 200/1229] loss=0.3732, metrics:accuracy:0.8619
INFO:root:[Batch 300/1229] loss=0.3392, metrics:accuracy:0.8667
INFO:root:[Batch 400/1229] loss=0.3457, metrics:accuracy:0.8688
INFO:root:[Batch 500/1229] loss=0.3865, metrics:accuracy:0.8670
INFO:root:[Batch 600/1229] loss=0.3137, metrics:accuracy:0.8698
INFO:root:[Batch 700/1229] loss=0.3835, metrics:accuracy:0.8693
INFO:root:[Batch 800/1229] loss=0.3771, metrics:accuracy:0.8670
INFO:root:[Batch 900/1229] loss=0.3721, metrics:accuracy:0.8669
INFO:root:[Batch 1000/1229] loss=0.3333, metrics:accuracy:0.8681
INFO:root:[Batch 1100/1229] loss=0.3743, metrics:accuracy:0.8691
INFO:root:[Batch 1200/1229] loss=0.3776, metrics:accuracy:0.8678
INFO:root:validation metrics:accuracy:0.8680
INFO:root:Time cost=26.99s, throughput=364.27 samples/s
INFO:root:params saved in: ./output_dir/model_bert_MNLI_1.params
INFO:root:Time cost=1872.61s
INFO:root:[Epoch 3 Batch 100/12276] loss=0.3111, lr=0.0000085, metrics:accuracy:0.8865
INFO:root:[Epoch 3 Batch 200/12276] loss=0.2654, lr=0.0000085, metrics:accuracy:0.8914
INFO:root:[Epoch 3 Batch 300/12276] loss=0.2889, lr=0.0000085, metrics:accuracy:0.8934
INFO:root:[Epoch 3 Batch 400/12276] loss=0.3136, lr=0.0000085, metrics:accuracy:0.8909
INFO:root:[Epoch 3 Batch 500/12276] loss=0.2983, lr=0.0000085, metrics:accuracy:0.8902
INFO:root:[Epoch 3 Batch 600/12276] loss=0.2799, lr=0.0000085, metrics:accuracy:0.8912
INFO:root:[Epoch 3 Batch 700/12276] loss=0.2965, lr=0.0000084, metrics:accuracy:0.8907
INFO:root:[Epoch 3 Batch 800/12276] loss=0.2841, lr=0.0000084, metrics:accuracy:0.8917
INFO:root:[Epoch 3 Batch 900/12276] loss=0.3058, lr=0.0000084, metrics:accuracy:0.8909
INFO:root:[Epoch 3 Batch 1000/12276] loss=0.3036, lr=0.0000084, metrics:accuracy:0.8898
INFO:root:[Epoch 3 Batch 1100/12276] loss=0.3034, lr=0.0000084, metrics:accuracy:0.8897
INFO:root:[Epoch 3 Batch 1200/12276] loss=0.3093, lr=0.0000084, metrics:accuracy:0.8892
INFO:root:[Epoch 3 Batch 1300/12276] loss=0.2994, lr=0.0000084, metrics:accuracy:0.8896
INFO:root:[Epoch 3 Batch 1400/12276] loss=0.2955, lr=0.0000084, metrics:accuracy:0.8899
INFO:root:[Epoch 3 Batch 1500/12276] loss=0.2907, lr=0.0000084, metrics:accuracy:0.8896
INFO:root:[Epoch 3 Batch 1600/12276] loss=0.2800, lr=0.0000084, metrics:accuracy:0.8904
INFO:root:[Epoch 3 Batch 1700/12276] loss=0.3013, lr=0.0000084, metrics:accuracy:0.8905
INFO:root:[Epoch 3 Batch 1800/12276] loss=0.2903, lr=0.0000084, metrics:accuracy:0.8904
INFO:root:[Epoch 3 Batch 1900/12276] loss=0.2820, lr=0.0000083, metrics:accuracy:0.8909
INFO:root:[Epoch 3 Batch 2000/12276] loss=0.3083, lr=0.0000083, metrics:accuracy:0.8905
INFO:root:[Epoch 3 Batch 2100/12276] loss=0.2982, lr=0.0000083, metrics:accuracy:0.8904
INFO:root:[Epoch 3 Batch 2200/12276] loss=0.3049, lr=0.0000083, metrics:accuracy:0.8903
INFO:root:[Epoch 3 Batch 2300/12276] loss=0.3000, lr=0.0000083, metrics:accuracy:0.8901
INFO:root:[Epoch 3 Batch 2400/12276] loss=0.2872, lr=0.0000083, metrics:accuracy:0.8900
INFO:root:[Epoch 3 Batch 2500/12276] loss=0.2848, lr=0.0000083, metrics:accuracy:0.8902
INFO:root:[Epoch 3 Batch 2600/12276] loss=0.3328, lr=0.0000083, metrics:accuracy:0.8899
INFO:root:[Epoch 3 Batch 2700/12276] loss=0.3029, lr=0.0000083, metrics:accuracy:0.8897
INFO:root:[Epoch 3 Batch 2800/12276] loss=0.3289, lr=0.0000083, metrics:accuracy:0.8892
INFO:root:[Epoch 3 Batch 2900/12276] loss=0.3013, lr=0.0000083, metrics:accuracy:0.8890
INFO:root:[Epoch 3 Batch 3000/12276] loss=0.2855, lr=0.0000082, metrics:accuracy:0.8891
INFO:root:[Epoch 3 Batch 3100/12276] loss=0.2952, lr=0.0000082, metrics:accuracy:0.8893
INFO:root:[Epoch 3 Batch 3200/12276] loss=0.2977, lr=0.0000082, metrics:accuracy:0.8892
INFO:root:[Epoch 3 Batch 3300/12276] loss=0.2829, lr=0.0000082, metrics:accuracy:0.8893
INFO:root:[Epoch 3 Batch 3400/12276] loss=0.2756, lr=0.0000082, metrics:accuracy:0.8897
INFO:root:[Epoch 3 Batch 3500/12276] loss=0.2760, lr=0.0000082, metrics:accuracy:0.8898
INFO:root:[Epoch 3 Batch 3600/12276] loss=0.3029, lr=0.0000082, metrics:accuracy:0.8897
INFO:root:[Epoch 3 Batch 3700/12276] loss=0.2953, lr=0.0000082, metrics:accuracy:0.8898
INFO:root:[Epoch 3 Batch 3800/12276] loss=0.2814, lr=0.0000082, metrics:accuracy:0.8899
INFO:root:[Epoch 3 Batch 3900/12276] loss=0.2910, lr=0.0000082, metrics:accuracy:0.8899
INFO:root:[Epoch 3 Batch 4000/12276] loss=0.3027, lr=0.0000082, metrics:accuracy:0.8898
INFO:root:[Epoch 3 Batch 4100/12276] loss=0.3108, lr=0.0000082, metrics:accuracy:0.8898
INFO:root:[Epoch 3 Batch 4200/12276] loss=0.2961, lr=0.0000081, metrics:accuracy:0.8898
INFO:root:[Epoch 3 Batch 4300/12276] loss=0.2988, lr=0.0000081, metrics:accuracy:0.8899
INFO:root:[Epoch 3 Batch 4400/12276] loss=0.2937, lr=0.0000081, metrics:accuracy:0.8900
INFO:root:[Epoch 3 Batch 4500/12276] loss=0.3092, lr=0.0000081, metrics:accuracy:0.8900
INFO:root:[Epoch 3 Batch 4600/12276] loss=0.2870, lr=0.0000081, metrics:accuracy:0.8900
INFO:root:[Epoch 3 Batch 4700/12276] loss=0.2933, lr=0.0000081, metrics:accuracy:0.8901
INFO:root:[Epoch 3 Batch 4800/12276] loss=0.2788, lr=0.0000081, metrics:accuracy:0.8904
INFO:root:[Epoch 3 Batch 4900/12276] loss=0.3017, lr=0.0000081, metrics:accuracy:0.8903
INFO:root:[Epoch 3 Batch 5000/12276] loss=0.2933, lr=0.0000081, metrics:accuracy:0.8904
INFO:root:[Epoch 3 Batch 5100/12276] loss=0.3230, lr=0.0000081, metrics:accuracy:0.8902
INFO:root:[Epoch 3 Batch 5200/12276] loss=0.2933, lr=0.0000081, metrics:accuracy:0.8901
INFO:root:[Epoch 3 Batch 5300/12276] loss=0.2785, lr=0.0000081, metrics:accuracy:0.8902
INFO:root:[Epoch 3 Batch 5400/12276] loss=0.2983, lr=0.0000080, metrics:accuracy:0.8903
INFO:root:[Epoch 3 Batch 5500/12276] loss=0.3015, lr=0.0000080, metrics:accuracy:0.8903
INFO:root:[Epoch 3 Batch 5600/12276] loss=0.2836, lr=0.0000080, metrics:accuracy:0.8903
INFO:root:[Epoch 3 Batch 5700/12276] loss=0.2963, lr=0.0000080, metrics:accuracy:0.8904
INFO:root:[Epoch 3 Batch 5800/12276] loss=0.3030, lr=0.0000080, metrics:accuracy:0.8904
INFO:root:[Epoch 3 Batch 5900/12276] loss=0.2773, lr=0.0000080, metrics:accuracy:0.8904
INFO:root:[Epoch 3 Batch 6000/12276] loss=0.3087, lr=0.0000080, metrics:accuracy:0.8902
INFO:root:[Epoch 3 Batch 6100/12276] loss=0.3040, lr=0.0000080, metrics:accuracy:0.8902
INFO:root:[Epoch 3 Batch 6200/12276] loss=0.3048, lr=0.0000080, metrics:accuracy:0.8902
INFO:root:[Epoch 3 Batch 6300/12276] loss=0.2904, lr=0.0000080, metrics:accuracy:0.8901
INFO:root:[Epoch 3 Batch 6400/12276] loss=0.2891, lr=0.0000080, metrics:accuracy:0.8901
INFO:root:[Epoch 3 Batch 6500/12276] loss=0.2937, lr=0.0000079, metrics:accuracy:0.8901
INFO:root:[Epoch 3 Batch 6600/12276] loss=0.3184, lr=0.0000079, metrics:accuracy:0.8900
INFO:root:[Epoch 3 Batch 6700/12276] loss=0.2966, lr=0.0000079, metrics:accuracy:0.8900
INFO:root:[Epoch 3 Batch 6800/12276] loss=0.2750, lr=0.0000079, metrics:accuracy:0.8901
INFO:root:[Epoch 3 Batch 6900/12276] loss=0.3056, lr=0.0000079, metrics:accuracy:0.8901
INFO:root:[Epoch 3 Batch 7000/12276] loss=0.2867, lr=0.0000079, metrics:accuracy:0.8902
INFO:root:[Epoch 3 Batch 7100/12276] loss=0.2887, lr=0.0000079, metrics:accuracy:0.8903
INFO:root:[Epoch 3 Batch 7200/12276] loss=0.2926, lr=0.0000079, metrics:accuracy:0.8904
INFO:root:[Epoch 3 Batch 7300/12276] loss=0.2830, lr=0.0000079, metrics:accuracy:0.8904
INFO:root:[Epoch 3 Batch 7400/12276] loss=0.2881, lr=0.0000079, metrics:accuracy:0.8905
INFO:root:[Epoch 3 Batch 7500/12276] loss=0.2870, lr=0.0000079, metrics:accuracy:0.8905
INFO:root:[Epoch 3 Batch 7600/12276] loss=0.3042, lr=0.0000079, metrics:accuracy:0.8904
INFO:root:[Epoch 3 Batch 7700/12276] loss=0.2811, lr=0.0000078, metrics:accuracy:0.8905
INFO:root:[Epoch 3 Batch 7800/12276] loss=0.3008, lr=0.0000078, metrics:accuracy:0.8905
INFO:root:[Epoch 3 Batch 7900/12276] loss=0.2862, lr=0.0000078, metrics:accuracy:0.8907
INFO:root:[Epoch 3 Batch 8000/12276] loss=0.3011, lr=0.0000078, metrics:accuracy:0.8906
INFO:root:[Epoch 3 Batch 8100/12276] loss=0.2890, lr=0.0000078, metrics:accuracy:0.8907
INFO:root:[Epoch 3 Batch 8200/12276] loss=0.2865, lr=0.0000078, metrics:accuracy:0.8907
INFO:root:[Epoch 3 Batch 8300/12276] loss=0.2957, lr=0.0000078, metrics:accuracy:0.8906
INFO:root:[Epoch 3 Batch 8400/12276] loss=0.2912, lr=0.0000078, metrics:accuracy:0.8906
INFO:root:[Epoch 3 Batch 8500/12276] loss=0.2949, lr=0.0000078, metrics:accuracy:0.8906
INFO:root:[Epoch 3 Batch 8600/12276] loss=0.3054, lr=0.0000078, metrics:accuracy:0.8905
INFO:root:[Epoch 3 Batch 8700/12276] loss=0.2837, lr=0.0000078, metrics:accuracy:0.8906
INFO:root:[Epoch 3 Batch 8800/12276] loss=0.2804, lr=0.0000077, metrics:accuracy:0.8906
INFO:root:[Epoch 3 Batch 8900/12276] loss=0.2928, lr=0.0000077, metrics:accuracy:0.8906
INFO:root:[Epoch 3 Batch 9000/12276] loss=0.3191, lr=0.0000077, metrics:accuracy:0.8905
INFO:root:[Epoch 3 Batch 9100/12276] loss=0.2948, lr=0.0000077, metrics:accuracy:0.8904
INFO:root:[Epoch 3 Batch 9200/12276] loss=0.2903, lr=0.0000077, metrics:accuracy:0.8905
INFO:root:[Epoch 3 Batch 9300/12276] loss=0.2649, lr=0.0000077, metrics:accuracy:0.8906
INFO:root:[Epoch 3 Batch 9400/12276] loss=0.3042, lr=0.0000077, metrics:accuracy:0.8906
INFO:root:[Epoch 3 Batch 9500/12276] loss=0.2890, lr=0.0000077, metrics:accuracy:0.8906
INFO:root:[Epoch 3 Batch 9600/12276] loss=0.2773, lr=0.0000077, metrics:accuracy:0.8907
INFO:root:[Epoch 3 Batch 9700/12276] loss=0.2653, lr=0.0000077, metrics:accuracy:0.8908
INFO:root:[Epoch 3 Batch 9800/12276] loss=0.2720, lr=0.0000077, metrics:accuracy:0.8909
INFO:root:[Epoch 3 Batch 9900/12276] loss=0.2963, lr=0.0000077, metrics:accuracy:0.8909
INFO:root:[Epoch 3 Batch 10000/12276] loss=0.2938, lr=0.0000076, metrics:accuracy:0.8908
INFO:root:[Epoch 3 Batch 10100/12276] loss=0.2755, lr=0.0000076, metrics:accuracy:0.8909
INFO:root:[Epoch 3 Batch 10200/12276] loss=0.3077, lr=0.0000076, metrics:accuracy:0.8909
INFO:root:[Epoch 3 Batch 10300/12276] loss=0.2746, lr=0.0000076, metrics:accuracy:0.8910
INFO:root:[Epoch 3 Batch 10400/12276] loss=0.2857, lr=0.0000076, metrics:accuracy:0.8909
INFO:root:[Epoch 3 Batch 10500/12276] loss=0.2914, lr=0.0000076, metrics:accuracy:0.8910
INFO:root:[Epoch 3 Batch 10600/12276] loss=0.2879, lr=0.0000076, metrics:accuracy:0.8910
INFO:root:[Epoch 3 Batch 10700/12276] loss=0.2934, lr=0.0000076, metrics:accuracy:0.8909
INFO:root:[Epoch 3 Batch 10800/12276] loss=0.3091, lr=0.0000076, metrics:accuracy:0.8908
INFO:root:[Epoch 3 Batch 10900/12276] loss=0.2725, lr=0.0000076, metrics:accuracy:0.8909
INFO:root:[Epoch 3 Batch 11000/12276] loss=0.2848, lr=0.0000076, metrics:accuracy:0.8910
INFO:root:[Epoch 3 Batch 11100/12276] loss=0.2801, lr=0.0000075, metrics:accuracy:0.8910
INFO:root:[Epoch 3 Batch 11200/12276] loss=0.2991, lr=0.0000075, metrics:accuracy:0.8910
INFO:root:[Epoch 3 Batch 11300/12276] loss=0.2849, lr=0.0000075, metrics:accuracy:0.8910
INFO:root:[Epoch 3 Batch 11400/12276] loss=0.2928, lr=0.0000075, metrics:accuracy:0.8910
INFO:root:[Epoch 3 Batch 11500/12276] loss=0.2827, lr=0.0000075, metrics:accuracy:0.8910
INFO:root:[Epoch 3 Batch 11600/12276] loss=0.2916, lr=0.0000075, metrics:accuracy:0.8911
INFO:root:[Epoch 3 Batch 11700/12276] loss=0.2833, lr=0.0000075, metrics:accuracy:0.8910
INFO:root:[Epoch 3 Batch 11800/12276] loss=0.2974, lr=0.0000075, metrics:accuracy:0.8910
INFO:root:[Epoch 3 Batch 11900/12276] loss=0.2968, lr=0.0000075, metrics:accuracy:0.8909
INFO:root:[Epoch 3 Batch 12000/12276] loss=0.2917, lr=0.0000075, metrics:accuracy:0.8909
INFO:root:[Epoch 3 Batch 12100/12276] loss=0.2914, lr=0.0000075, metrics:accuracy:0.8910
INFO:root:[Epoch 3 Batch 12200/12276] loss=0.2986, lr=0.0000075, metrics:accuracy:0.8910
INFO:root:Now we are doing evaluation on dev_matched with gpu(1).
INFO:root:[Batch 100/1227] loss=0.3524, metrics:accuracy:0.8688
INFO:root:[Batch 200/1227] loss=0.3569, metrics:accuracy:0.8725
INFO:root:[Batch 300/1227] loss=0.3505, metrics:accuracy:0.8700
INFO:root:[Batch 400/1227] loss=0.3512, metrics:accuracy:0.8716
INFO:root:[Batch 500/1227] loss=0.3585, metrics:accuracy:0.8758
INFO:root:[Batch 600/1227] loss=0.3222, metrics:accuracy:0.8777
INFO:root:[Batch 700/1227] loss=0.3540, metrics:accuracy:0.8768
INFO:root:[Batch 800/1227] loss=0.3453, metrics:accuracy:0.8764
INFO:root:[Batch 900/1227] loss=0.3451, metrics:accuracy:0.8756
INFO:root:[Batch 1000/1227] loss=0.3965, metrics:accuracy:0.8739
INFO:root:[Batch 1100/1227] loss=0.4183, metrics:accuracy:0.8720
INFO:root:[Batch 1200/1227] loss=0.3667, metrics:accuracy:0.8721
INFO:root:validation metrics:accuracy:0.8726
INFO:root:Time cost=26.19s, throughput=374.83 samples/s
INFO:root:Now we are doing evaluation on dev_mismatched with gpu(1).
INFO:root:[Batch 100/1229] loss=0.3939, metrics:accuracy:0.8675
INFO:root:[Batch 200/1229] loss=0.3632, metrics:accuracy:0.8712
INFO:root:[Batch 300/1229] loss=0.3242, metrics:accuracy:0.8750
INFO:root:[Batch 400/1229] loss=0.3522, metrics:accuracy:0.8741
INFO:root:[Batch 500/1229] loss=0.3561, metrics:accuracy:0.8730
INFO:root:[Batch 600/1229] loss=0.3294, metrics:accuracy:0.8744
INFO:root:[Batch 700/1229] loss=0.3826, metrics:accuracy:0.8739
INFO:root:[Batch 800/1229] loss=0.3498, metrics:accuracy:0.8727
INFO:root:[Batch 900/1229] loss=0.3554, metrics:accuracy:0.8733
INFO:root:[Batch 1000/1229] loss=0.3379, metrics:accuracy:0.8740
INFO:root:[Batch 1100/1229] loss=0.3798, metrics:accuracy:0.8738
INFO:root:[Batch 1200/1229] loss=0.3864, metrics:accuracy:0.8728
INFO:root:validation metrics:accuracy:0.8731
INFO:root:Time cost=26.54s, throughput=370.48 samples/s
INFO:root:params saved in: ./output_dir/model_bert_MNLI_2.params
INFO:root:Time cost=1838.79s
INFO:root:[Epoch 4 Batch 100/12276] loss=0.2425, lr=0.0000074, metrics:accuracy:0.9122
INFO:root:[Epoch 4 Batch 200/12276] loss=0.2506, lr=0.0000074, metrics:accuracy:0.9094
INFO:root:[Epoch 4 Batch 300/12276] loss=0.2513, lr=0.0000074, metrics:accuracy:0.9073
INFO:root:[Epoch 4 Batch 400/12276] loss=0.2352, lr=0.0000074, metrics:accuracy:0.9105
INFO:root:[Epoch 4 Batch 500/12276] loss=0.2264, lr=0.0000074, metrics:accuracy:0.9125
INFO:root:[Epoch 4 Batch 600/12276] loss=0.2306, lr=0.0000074, metrics:accuracy:0.9132
INFO:root:[Epoch 4 Batch 700/12276] loss=0.2371, lr=0.0000074, metrics:accuracy:0.9132
INFO:root:[Epoch 4 Batch 800/12276] loss=0.2471, lr=0.0000074, metrics:accuracy:0.9129
INFO:root:[Epoch 4 Batch 900/12276] loss=0.2284, lr=0.0000074, metrics:accuracy:0.9134
INFO:root:[Epoch 4 Batch 1000/12276] loss=0.2480, lr=0.0000074, metrics:accuracy:0.9135
INFO:root:[Epoch 4 Batch 1100/12276] loss=0.2254, lr=0.0000074, metrics:accuracy:0.9140
INFO:root:[Epoch 4 Batch 1200/12276] loss=0.2406, lr=0.0000073, metrics:accuracy:0.9139
INFO:root:[Epoch 4 Batch 1300/12276] loss=0.2436, lr=0.0000073, metrics:accuracy:0.9137
INFO:root:[Epoch 4 Batch 1400/12276] loss=0.2426, lr=0.0000073, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 1500/12276] loss=0.2197, lr=0.0000073, metrics:accuracy:0.9137
INFO:root:[Epoch 4 Batch 1600/12276] loss=0.2272, lr=0.0000073, metrics:accuracy:0.9139
INFO:root:[Epoch 4 Batch 1700/12276] loss=0.2473, lr=0.0000073, metrics:accuracy:0.9134
INFO:root:[Epoch 4 Batch 1800/12276] loss=0.2280, lr=0.0000073, metrics:accuracy:0.9135
INFO:root:[Epoch 4 Batch 1900/12276] loss=0.2550, lr=0.0000073, metrics:accuracy:0.9134
INFO:root:[Epoch 4 Batch 2000/12276] loss=0.2375, lr=0.0000073, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 2100/12276] loss=0.2270, lr=0.0000073, metrics:accuracy:0.9134
INFO:root:[Epoch 4 Batch 2200/12276] loss=0.2338, lr=0.0000073, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 2300/12276] loss=0.2430, lr=0.0000072, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 2400/12276] loss=0.2403, lr=0.0000072, metrics:accuracy:0.9132
INFO:root:[Epoch 4 Batch 2500/12276] loss=0.2506, lr=0.0000072, metrics:accuracy:0.9131
INFO:root:[Epoch 4 Batch 2600/12276] loss=0.2170, lr=0.0000072, metrics:accuracy:0.9135
INFO:root:[Epoch 4 Batch 2700/12276] loss=0.2432, lr=0.0000072, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 2800/12276] loss=0.2342, lr=0.0000072, metrics:accuracy:0.9134
INFO:root:[Epoch 4 Batch 2900/12276] loss=0.2389, lr=0.0000072, metrics:accuracy:0.9135
INFO:root:[Epoch 4 Batch 3000/12276] loss=0.2389, lr=0.0000072, metrics:accuracy:0.9136
INFO:root:[Epoch 4 Batch 3100/12276] loss=0.2541, lr=0.0000072, metrics:accuracy:0.9134
INFO:root:[Epoch 4 Batch 3200/12276] loss=0.2510, lr=0.0000072, metrics:accuracy:0.9132
INFO:root:[Epoch 4 Batch 3300/12276] loss=0.2461, lr=0.0000072, metrics:accuracy:0.9132
INFO:root:[Epoch 4 Batch 3400/12276] loss=0.2266, lr=0.0000072, metrics:accuracy:0.9134
INFO:root:[Epoch 4 Batch 3500/12276] loss=0.2403, lr=0.0000071, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 3600/12276] loss=0.2425, lr=0.0000071, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 3700/12276] loss=0.2135, lr=0.0000071, metrics:accuracy:0.9135
INFO:root:[Epoch 4 Batch 3800/12276] loss=0.2420, lr=0.0000071, metrics:accuracy:0.9134
INFO:root:[Epoch 4 Batch 3900/12276] loss=0.2694, lr=0.0000071, metrics:accuracy:0.9131
INFO:root:[Epoch 4 Batch 4000/12276] loss=0.2177, lr=0.0000071, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 4100/12276] loss=0.2331, lr=0.0000071, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 4200/12276] loss=0.2285, lr=0.0000071, metrics:accuracy:0.9134
INFO:root:[Epoch 4 Batch 4300/12276] loss=0.2441, lr=0.0000071, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 4400/12276] loss=0.2428, lr=0.0000071, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 4500/12276] loss=0.2293, lr=0.0000071, metrics:accuracy:0.9135
INFO:root:[Epoch 4 Batch 4600/12276] loss=0.2376, lr=0.0000070, metrics:accuracy:0.9135
INFO:root:[Epoch 4 Batch 4700/12276] loss=0.2472, lr=0.0000070, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 4800/12276] loss=0.2407, lr=0.0000070, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 4900/12276] loss=0.2419, lr=0.0000070, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 5000/12276] loss=0.2468, lr=0.0000070, metrics:accuracy:0.9134
INFO:root:[Epoch 4 Batch 5100/12276] loss=0.2386, lr=0.0000070, metrics:accuracy:0.9134
INFO:root:[Epoch 4 Batch 5200/12276] loss=0.2293, lr=0.0000070, metrics:accuracy:0.9134
INFO:root:[Epoch 4 Batch 5300/12276] loss=0.2628, lr=0.0000070, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 5400/12276] loss=0.2385, lr=0.0000070, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 5500/12276] loss=0.2316, lr=0.0000070, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 5600/12276] loss=0.2446, lr=0.0000070, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 5700/12276] loss=0.2514, lr=0.0000070, metrics:accuracy:0.9132
INFO:root:[Epoch 4 Batch 5800/12276] loss=0.2404, lr=0.0000069, metrics:accuracy:0.9132
INFO:root:[Epoch 4 Batch 5900/12276] loss=0.2309, lr=0.0000069, metrics:accuracy:0.9132
INFO:root:[Epoch 4 Batch 6000/12276] loss=0.2373, lr=0.0000069, metrics:accuracy:0.9132
INFO:root:[Epoch 4 Batch 6100/12276] loss=0.2475, lr=0.0000069, metrics:accuracy:0.9131
INFO:root:[Epoch 4 Batch 6200/12276] loss=0.2230, lr=0.0000069, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 6300/12276] loss=0.2371, lr=0.0000069, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 6400/12276] loss=0.2316, lr=0.0000069, metrics:accuracy:0.9133
INFO:root:[Epoch 4 Batch 6500/12276] loss=0.2688, lr=0.0000069, metrics:accuracy:0.9131
INFO:root:[Epoch 4 Batch 6600/12276] loss=0.2344, lr=0.0000069, metrics:accuracy:0.9131
INFO:root:[Epoch 4 Batch 6700/12276] loss=0.2473, lr=0.0000069, metrics:accuracy:0.9130
INFO:root:[Epoch 4 Batch 6800/12276] loss=0.2585, lr=0.0000069, metrics:accuracy:0.9130
INFO:root:[Epoch 4 Batch 6900/12276] loss=0.2442, lr=0.0000068, metrics:accuracy:0.9129
INFO:root:[Epoch 4 Batch 7000/12276] loss=0.2605, lr=0.0000068, metrics:accuracy:0.9129
INFO:root:[Epoch 4 Batch 7100/12276] loss=0.2349, lr=0.0000068, metrics:accuracy:0.9129
INFO:root:[Epoch 4 Batch 7200/12276] loss=0.2291, lr=0.0000068, metrics:accuracy:0.9130
INFO:root:[Epoch 4 Batch 7300/12276] loss=0.2524, lr=0.0000068, metrics:accuracy:0.9129
INFO:root:[Epoch 4 Batch 7400/12276] loss=0.2469, lr=0.0000068, metrics:accuracy:0.9129
INFO:root:[Epoch 4 Batch 7500/12276] loss=0.2291, lr=0.0000068, metrics:accuracy:0.9130
INFO:root:[Epoch 4 Batch 7600/12276] loss=0.2374, lr=0.0000068, metrics:accuracy:0.9129
INFO:root:[Epoch 4 Batch 7700/12276] loss=0.2472, lr=0.0000068, metrics:accuracy:0.9128
INFO:root:[Epoch 4 Batch 7800/12276] loss=0.2519, lr=0.0000068, metrics:accuracy:0.9128
INFO:root:[Epoch 4 Batch 7900/12276] loss=0.2375, lr=0.0000068, metrics:accuracy:0.9128
INFO:root:[Epoch 4 Batch 8000/12276] loss=0.2482, lr=0.0000068, metrics:accuracy:0.9127
INFO:root:[Epoch 4 Batch 8100/12276] loss=0.2275, lr=0.0000067, metrics:accuracy:0.9128
INFO:root:[Epoch 4 Batch 8200/12276] loss=0.2328, lr=0.0000067, metrics:accuracy:0.9128
INFO:root:[Epoch 4 Batch 8300/12276] loss=0.2642, lr=0.0000067, metrics:accuracy:0.9127
INFO:root:[Epoch 4 Batch 8400/12276] loss=0.2611, lr=0.0000067, metrics:accuracy:0.9126
INFO:root:[Epoch 4 Batch 8500/12276] loss=0.2551, lr=0.0000067, metrics:accuracy:0.9125
INFO:root:[Epoch 4 Batch 8600/12276] loss=0.2259, lr=0.0000067, metrics:accuracy:0.9126
INFO:root:[Epoch 4 Batch 8700/12276] loss=0.2470, lr=0.0000067, metrics:accuracy:0.9127
INFO:root:[Epoch 4 Batch 8800/12276] loss=0.2587, lr=0.0000067, metrics:accuracy:0.9126
INFO:root:[Epoch 4 Batch 8900/12276] loss=0.2203, lr=0.0000067, metrics:accuracy:0.9127
INFO:root:[Epoch 4 Batch 9000/12276] loss=0.2436, lr=0.0000067, metrics:accuracy:0.9127
INFO:root:[Epoch 4 Batch 9100/12276] loss=0.2498, lr=0.0000067, metrics:accuracy:0.9127
INFO:root:[Epoch 4 Batch 9200/12276] loss=0.2397, lr=0.0000066, metrics:accuracy:0.9128
INFO:root:[Epoch 4 Batch 9300/12276] loss=0.2593, lr=0.0000066, metrics:accuracy:0.9127
INFO:root:[Epoch 4 Batch 9400/12276] loss=0.2552, lr=0.0000066, metrics:accuracy:0.9126
INFO:root:[Epoch 4 Batch 9500/12276] loss=0.2508, lr=0.0000066, metrics:accuracy:0.9126
INFO:root:[Epoch 4 Batch 9600/12276] loss=0.2465, lr=0.0000066, metrics:accuracy:0.9125
INFO:root:[Epoch 4 Batch 9700/12276] loss=0.2338, lr=0.0000066, metrics:accuracy:0.9125
INFO:root:[Epoch 4 Batch 9800/12276] loss=0.2463, lr=0.0000066, metrics:accuracy:0.9125
INFO:root:[Epoch 4 Batch 9900/12276] loss=0.2395, lr=0.0000066, metrics:accuracy:0.9125
INFO:root:[Epoch 4 Batch 10000/12276] loss=0.2570, lr=0.0000066, metrics:accuracy:0.9124
INFO:root:[Epoch 4 Batch 10100/12276] loss=0.2455, lr=0.0000066, metrics:accuracy:0.9124
INFO:root:[Epoch 4 Batch 10200/12276] loss=0.2589, lr=0.0000066, metrics:accuracy:0.9123
INFO:root:[Epoch 4 Batch 10300/12276] loss=0.2302, lr=0.0000066, metrics:accuracy:0.9124
INFO:root:[Epoch 4 Batch 10400/12276] loss=0.2417, lr=0.0000065, metrics:accuracy:0.9125
INFO:root:[Epoch 4 Batch 10500/12276] loss=0.2583, lr=0.0000065, metrics:accuracy:0.9125
INFO:root:[Epoch 4 Batch 10600/12276] loss=0.2543, lr=0.0000065, metrics:accuracy:0.9124
INFO:root:[Epoch 4 Batch 10700/12276] loss=0.2353, lr=0.0000065, metrics:accuracy:0.9124
INFO:root:[Epoch 4 Batch 10800/12276] loss=0.2739, lr=0.0000065, metrics:accuracy:0.9123
INFO:root:[Epoch 4 Batch 10900/12276] loss=0.2527, lr=0.0000065, metrics:accuracy:0.9123
INFO:root:[Epoch 4 Batch 11000/12276] loss=0.2387, lr=0.0000065, metrics:accuracy:0.9123
INFO:root:[Epoch 4 Batch 11100/12276] loss=0.2468, lr=0.0000065, metrics:accuracy:0.9124
INFO:root:[Epoch 4 Batch 11200/12276] loss=0.2664, lr=0.0000065, metrics:accuracy:0.9123
INFO:root:[Epoch 4 Batch 11300/12276] loss=0.2420, lr=0.0000065, metrics:accuracy:0.9123
INFO:root:[Epoch 4 Batch 11400/12276] loss=0.2274, lr=0.0000065, metrics:accuracy:0.9123
INFO:root:[Epoch 4 Batch 11500/12276] loss=0.2455, lr=0.0000064, metrics:accuracy:0.9123
INFO:root:[Epoch 4 Batch 11600/12276] loss=0.2351, lr=0.0000064, metrics:accuracy:0.9123
INFO:root:[Epoch 4 Batch 11700/12276] loss=0.2552, lr=0.0000064, metrics:accuracy:0.9123
INFO:root:[Epoch 4 Batch 11800/12276] loss=0.2513, lr=0.0000064, metrics:accuracy:0.9122
INFO:root:[Epoch 4 Batch 11900/12276] loss=0.2416, lr=0.0000064, metrics:accuracy:0.9122
INFO:root:[Epoch 4 Batch 12000/12276] loss=0.2470, lr=0.0000064, metrics:accuracy:0.9122
INFO:root:[Epoch 4 Batch 12100/12276] loss=0.2426, lr=0.0000064, metrics:accuracy:0.9122
INFO:root:[Epoch 4 Batch 12200/12276] loss=0.2400, lr=0.0000064, metrics:accuracy:0.9122
INFO:root:Now we are doing evaluation on dev_matched with gpu(1).
INFO:root:[Batch 100/1227] loss=0.3799, metrics:accuracy:0.8750
INFO:root:[Batch 200/1227] loss=0.3971, metrics:accuracy:0.8731
INFO:root:[Batch 300/1227] loss=0.3579, metrics:accuracy:0.8729
INFO:root:[Batch 400/1227] loss=0.3944, metrics:accuracy:0.8766
INFO:root:[Batch 500/1227] loss=0.3886, metrics:accuracy:0.8792
INFO:root:[Batch 600/1227] loss=0.3553, metrics:accuracy:0.8821
INFO:root:[Batch 700/1227] loss=0.4158, metrics:accuracy:0.8798
INFO:root:[Batch 800/1227] loss=0.3776, metrics:accuracy:0.8802
INFO:root:[Batch 900/1227] loss=0.3579, metrics:accuracy:0.8803
INFO:root:[Batch 1000/1227] loss=0.4332, metrics:accuracy:0.8785
INFO:root:[Batch 1100/1227] loss=0.4357, metrics:accuracy:0.8772
INFO:root:[Batch 1200/1227] loss=0.4093, metrics:accuracy:0.8762
INFO:root:validation metrics:accuracy:0.8769
INFO:root:Time cost=26.39s, throughput=372.00 samples/s
INFO:root:Now we are doing evaluation on dev_mismatched with gpu(1).
INFO:root:[Batch 100/1229] loss=0.4355, metrics:accuracy:0.8725
INFO:root:[Batch 200/1229] loss=0.3935, metrics:accuracy:0.8700
INFO:root:[Batch 300/1229] loss=0.3723, metrics:accuracy:0.8783
INFO:root:[Batch 400/1229] loss=0.4027, metrics:accuracy:0.8781
INFO:root:[Batch 500/1229] loss=0.3951, metrics:accuracy:0.8762
INFO:root:[Batch 600/1229] loss=0.3795, metrics:accuracy:0.8773
INFO:root:[Batch 700/1229] loss=0.4544, metrics:accuracy:0.8741
INFO:root:[Batch 800/1229] loss=0.3535, metrics:accuracy:0.8752
INFO:root:[Batch 900/1229] loss=0.4116, metrics:accuracy:0.8747
INFO:root:[Batch 1000/1229] loss=0.3745, metrics:accuracy:0.8736
INFO:root:[Batch 1100/1229] loss=0.4227, metrics:accuracy:0.8726
INFO:root:[Batch 1200/1229] loss=0.4300, metrics:accuracy:0.8719
INFO:root:validation metrics:accuracy:0.8723
INFO:root:Time cost=26.51s, throughput=370.85 samples/s
INFO:root:params saved in: ./output_dir/model_bert_MNLI_3.params
INFO:root:Time cost=1788.46s
INFO:root:[Epoch 5 Batch 100/12276] loss=0.1885, lr=0.0000064, metrics:accuracy:0.9313
INFO:root:[Epoch 5 Batch 200/12276] loss=0.1918, lr=0.0000064, metrics:accuracy:0.9316
INFO:root:[Epoch 5 Batch 300/12276] loss=0.2098, lr=0.0000064, metrics:accuracy:0.9303
INFO:root:[Epoch 5 Batch 400/12276] loss=0.2025, lr=0.0000063, metrics:accuracy:0.9290
INFO:root:[Epoch 5 Batch 500/12276] loss=0.1960, lr=0.0000063, metrics:accuracy:0.9295
INFO:root:[Epoch 5 Batch 600/12276] loss=0.1697, lr=0.0000063, metrics:accuracy:0.9320
INFO:root:[Epoch 5 Batch 700/12276] loss=0.1966, lr=0.0000063, metrics:accuracy:0.9319
INFO:root:[Epoch 5 Batch 800/12276] loss=0.1781, lr=0.0000063, metrics:accuracy:0.9331
INFO:root:[Epoch 5 Batch 900/12276] loss=0.1933, lr=0.0000063, metrics:accuracy:0.9330
INFO:root:[Epoch 5 Batch 1000/12276] loss=0.2116, lr=0.0000063, metrics:accuracy:0.9325
INFO:root:[Epoch 5 Batch 1100/12276] loss=0.2004, lr=0.0000063, metrics:accuracy:0.9324
INFO:root:[Epoch 5 Batch 1200/12276] loss=0.2070, lr=0.0000063, metrics:accuracy:0.9320
INFO:root:[Epoch 5 Batch 1300/12276] loss=0.1905, lr=0.0000063, metrics:accuracy:0.9318
INFO:root:[Epoch 5 Batch 1400/12276] loss=0.1941, lr=0.0000063, metrics:accuracy:0.9318
INFO:root:[Epoch 5 Batch 1500/12276] loss=0.1960, lr=0.0000063, metrics:accuracy:0.9316
INFO:root:[Epoch 5 Batch 1600/12276] loss=0.1877, lr=0.0000062, metrics:accuracy:0.9317
INFO:root:[Epoch 5 Batch 1700/12276] loss=0.1890, lr=0.0000062, metrics:accuracy:0.9317
INFO:root:[Epoch 5 Batch 1800/12276] loss=0.1821, lr=0.0000062, metrics:accuracy:0.9319
INFO:root:[Epoch 5 Batch 1900/12276] loss=0.2096, lr=0.0000062, metrics:accuracy:0.9317
INFO:root:[Epoch 5 Batch 2000/12276] loss=0.2011, lr=0.0000062, metrics:accuracy:0.9314
INFO:root:[Epoch 5 Batch 2100/12276] loss=0.2010, lr=0.0000062, metrics:accuracy:0.9313
INFO:root:[Epoch 5 Batch 2200/12276] loss=0.2178, lr=0.0000062, metrics:accuracy:0.9308
INFO:root:[Epoch 5 Batch 2300/12276] loss=0.2010, lr=0.0000062, metrics:accuracy:0.9307
INFO:root:[Epoch 5 Batch 2400/12276] loss=0.1801, lr=0.0000062, metrics:accuracy:0.9310
INFO:root:[Epoch 5 Batch 2500/12276] loss=0.1933, lr=0.0000062, metrics:accuracy:0.9309
INFO:root:[Epoch 5 Batch 2600/12276] loss=0.2032, lr=0.0000062, metrics:accuracy:0.9308
INFO:root:[Epoch 5 Batch 2700/12276] loss=0.1934, lr=0.0000061, metrics:accuracy:0.9308
INFO:root:[Epoch 5 Batch 2800/12276] loss=0.2084, lr=0.0000061, metrics:accuracy:0.9307
INFO:root:[Epoch 5 Batch 2900/12276] loss=0.1961, lr=0.0000061, metrics:accuracy:0.9307
INFO:root:[Epoch 5 Batch 3000/12276] loss=0.1914, lr=0.0000061, metrics:accuracy:0.9306
INFO:root:[Epoch 5 Batch 3100/12276] loss=0.1858, lr=0.0000061, metrics:accuracy:0.9309
INFO:root:[Epoch 5 Batch 3200/12276] loss=0.2219, lr=0.0000061, metrics:accuracy:0.9305
INFO:root:[Epoch 5 Batch 3300/12276] loss=0.2035, lr=0.0000061, metrics:accuracy:0.9304
INFO:root:[Epoch 5 Batch 3400/12276] loss=0.2068, lr=0.0000061, metrics:accuracy:0.9303
INFO:root:[Epoch 5 Batch 3500/12276] loss=0.1998, lr=0.0000061, metrics:accuracy:0.9303
INFO:root:[Epoch 5 Batch 3600/12276] loss=0.1956, lr=0.0000061, metrics:accuracy:0.9303
INFO:root:[Epoch 5 Batch 3700/12276] loss=0.1959, lr=0.0000061, metrics:accuracy:0.9304
INFO:root:[Epoch 5 Batch 3800/12276] loss=0.1923, lr=0.0000061, metrics:accuracy:0.9305
INFO:root:[Epoch 5 Batch 3900/12276] loss=0.2087, lr=0.0000060, metrics:accuracy:0.9303
INFO:root:[Epoch 5 Batch 4000/12276] loss=0.2040, lr=0.0000060, metrics:accuracy:0.9302
INFO:root:[Epoch 5 Batch 4100/12276] loss=0.1936, lr=0.0000060, metrics:accuracy:0.9302
INFO:root:[Epoch 5 Batch 4200/12276] loss=0.1723, lr=0.0000060, metrics:accuracy:0.9304
INFO:root:[Epoch 5 Batch 4300/12276] loss=0.2188, lr=0.0000060, metrics:accuracy:0.9302
INFO:root:[Epoch 5 Batch 4400/12276] loss=0.1874, lr=0.0000060, metrics:accuracy:0.9303
INFO:root:[Epoch 5 Batch 4500/12276] loss=0.2203, lr=0.0000060, metrics:accuracy:0.9301
INFO:root:[Epoch 5 Batch 4600/12276] loss=0.2120, lr=0.0000060, metrics:accuracy:0.9299
INFO:root:[Epoch 5 Batch 4700/12276] loss=0.1936, lr=0.0000060, metrics:accuracy:0.9299
INFO:root:[Epoch 5 Batch 4800/12276] loss=0.2045, lr=0.0000060, metrics:accuracy:0.9299
INFO:root:[Epoch 5 Batch 4900/12276] loss=0.2224, lr=0.0000060, metrics:accuracy:0.9298
INFO:root:[Epoch 5 Batch 5000/12276] loss=0.1860, lr=0.0000059, metrics:accuracy:0.9299
INFO:root:[Epoch 5 Batch 5100/12276] loss=0.2054, lr=0.0000059, metrics:accuracy:0.9298
INFO:root:[Epoch 5 Batch 5200/12276] loss=0.2027, lr=0.0000059, metrics:accuracy:0.9297
INFO:root:[Epoch 5 Batch 5300/12276] loss=0.2075, lr=0.0000059, metrics:accuracy:0.9296
INFO:root:[Epoch 5 Batch 5400/12276] loss=0.2123, lr=0.0000059, metrics:accuracy:0.9296
INFO:root:[Epoch 5 Batch 5500/12276] loss=0.1907, lr=0.0000059, metrics:accuracy:0.9296
INFO:root:[Epoch 5 Batch 5600/12276] loss=0.1952, lr=0.0000059, metrics:accuracy:0.9296
INFO:root:[Epoch 5 Batch 5700/12276] loss=0.2014, lr=0.0000059, metrics:accuracy:0.9296
INFO:root:[Epoch 5 Batch 5800/12276] loss=0.1950, lr=0.0000059, metrics:accuracy:0.9295
INFO:root:[Epoch 5 Batch 5900/12276] loss=0.1963, lr=0.0000059, metrics:accuracy:0.9296
INFO:root:[Epoch 5 Batch 6000/12276] loss=0.1923, lr=0.0000059, metrics:accuracy:0.9296
INFO:root:[Epoch 5 Batch 6100/12276] loss=0.2088, lr=0.0000059, metrics:accuracy:0.9295
INFO:root:[Epoch 5 Batch 6200/12276] loss=0.1914, lr=0.0000058, metrics:accuracy:0.9296
INFO:root:[Epoch 5 Batch 6300/12276] loss=0.2146, lr=0.0000058, metrics:accuracy:0.9295
INFO:root:[Epoch 5 Batch 6400/12276] loss=0.2196, lr=0.0000058, metrics:accuracy:0.9294
INFO:root:[Epoch 5 Batch 6500/12276] loss=0.1843, lr=0.0000058, metrics:accuracy:0.9295
INFO:root:[Epoch 5 Batch 6600/12276] loss=0.2062, lr=0.0000058, metrics:accuracy:0.9295
INFO:root:[Epoch 5 Batch 6700/12276] loss=0.1997, lr=0.0000058, metrics:accuracy:0.9295
INFO:root:[Epoch 5 Batch 6800/12276] loss=0.2087, lr=0.0000058, metrics:accuracy:0.9295
INFO:root:[Epoch 5 Batch 6900/12276] loss=0.2036, lr=0.0000058, metrics:accuracy:0.9295
INFO:root:[Epoch 5 Batch 7000/12276] loss=0.2192, lr=0.0000058, metrics:accuracy:0.9293
INFO:root:[Epoch 5 Batch 7100/12276] loss=0.1841, lr=0.0000058, metrics:accuracy:0.9293
INFO:root:[Epoch 5 Batch 7200/12276] loss=0.1919, lr=0.0000058, metrics:accuracy:0.9293
INFO:root:[Epoch 5 Batch 7300/12276] loss=0.2086, lr=0.0000057, metrics:accuracy:0.9292
INFO:root:[Epoch 5 Batch 7400/12276] loss=0.2046, lr=0.0000057, metrics:accuracy:0.9291
INFO:root:[Epoch 5 Batch 7500/12276] loss=0.2123, lr=0.0000057, metrics:accuracy:0.9291
INFO:root:[Epoch 5 Batch 7600/12276] loss=0.1982, lr=0.0000057, metrics:accuracy:0.9290
INFO:root:[Epoch 5 Batch 7700/12276] loss=0.1872, lr=0.0000057, metrics:accuracy:0.9291
INFO:root:[Epoch 5 Batch 7800/12276] loss=0.1963, lr=0.0000057, metrics:accuracy:0.9291
INFO:root:[Epoch 5 Batch 7900/12276] loss=0.1974, lr=0.0000057, metrics:accuracy:0.9291
INFO:root:[Epoch 5 Batch 8000/12276] loss=0.2155, lr=0.0000057, metrics:accuracy:0.9290
INFO:root:[Epoch 5 Batch 8100/12276] loss=0.1983, lr=0.0000057, metrics:accuracy:0.9290
INFO:root:[Epoch 5 Batch 8200/12276] loss=0.1989, lr=0.0000057, metrics:accuracy:0.9290
INFO:root:[Epoch 5 Batch 8300/12276] loss=0.2103, lr=0.0000057, metrics:accuracy:0.9290
INFO:root:[Epoch 5 Batch 8400/12276] loss=0.2087, lr=0.0000057, metrics:accuracy:0.9289
INFO:root:[Epoch 5 Batch 8500/12276] loss=0.2041, lr=0.0000056, metrics:accuracy:0.9289
INFO:root:[Epoch 5 Batch 8600/12276] loss=0.1992, lr=0.0000056, metrics:accuracy:0.9289
INFO:root:[Epoch 5 Batch 8700/12276] loss=0.2076, lr=0.0000056, metrics:accuracy:0.9289
INFO:root:[Epoch 5 Batch 8800/12276] loss=0.2148, lr=0.0000056, metrics:accuracy:0.9289
INFO:root:[Epoch 5 Batch 8900/12276] loss=0.2180, lr=0.0000056, metrics:accuracy:0.9288
INFO:root:[Epoch 5 Batch 9000/12276] loss=0.1786, lr=0.0000056, metrics:accuracy:0.9289
INFO:root:[Epoch 5 Batch 9100/12276] loss=0.2223, lr=0.0000056, metrics:accuracy:0.9288
INFO:root:[Epoch 5 Batch 9200/12276] loss=0.1853, lr=0.0000056, metrics:accuracy:0.9289
INFO:root:[Epoch 5 Batch 9300/12276] loss=0.2108, lr=0.0000056, metrics:accuracy:0.9288
INFO:root:[Epoch 5 Batch 9400/12276] loss=0.1998, lr=0.0000056, metrics:accuracy:0.9288
INFO:root:[Epoch 5 Batch 9500/12276] loss=0.1970, lr=0.0000056, metrics:accuracy:0.9288
INFO:root:[Epoch 5 Batch 9600/12276] loss=0.1949, lr=0.0000055, metrics:accuracy:0.9289
INFO:root:[Epoch 5 Batch 9700/12276] loss=0.2183, lr=0.0000055, metrics:accuracy:0.9288
INFO:root:[Epoch 5 Batch 9800/12276] loss=0.2194, lr=0.0000055, metrics:accuracy:0.9286
INFO:root:[Epoch 5 Batch 9900/12276] loss=0.1921, lr=0.0000055, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 10000/12276] loss=0.2046, lr=0.0000055, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 10100/12276] loss=0.1937, lr=0.0000055, metrics:accuracy:0.9286
INFO:root:[Epoch 5 Batch 10200/12276] loss=0.1857, lr=0.0000055, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 10300/12276] loss=0.2272, lr=0.0000055, metrics:accuracy:0.9286
INFO:root:[Epoch 5 Batch 10400/12276] loss=0.1986, lr=0.0000055, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 10500/12276] loss=0.1951, lr=0.0000055, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 10600/12276] loss=0.2080, lr=0.0000055, metrics:accuracy:0.9286
INFO:root:[Epoch 5 Batch 10700/12276] loss=0.1681, lr=0.0000055, metrics:accuracy:0.9288
INFO:root:[Epoch 5 Batch 10800/12276] loss=0.2173, lr=0.0000054, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 10900/12276] loss=0.1854, lr=0.0000054, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 11000/12276] loss=0.2003, lr=0.0000054, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 11100/12276] loss=0.1832, lr=0.0000054, metrics:accuracy:0.9288
INFO:root:[Epoch 5 Batch 11200/12276] loss=0.2089, lr=0.0000054, metrics:accuracy:0.9288
INFO:root:[Epoch 5 Batch 11300/12276] loss=0.2028, lr=0.0000054, metrics:accuracy:0.9288
INFO:root:[Epoch 5 Batch 11400/12276] loss=0.1959, lr=0.0000054, metrics:accuracy:0.9288
INFO:root:[Epoch 5 Batch 11500/12276] loss=0.2150, lr=0.0000054, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 11600/12276] loss=0.1968, lr=0.0000054, metrics:accuracy:0.9288
INFO:root:[Epoch 5 Batch 11700/12276] loss=0.2121, lr=0.0000054, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 11800/12276] loss=0.1965, lr=0.0000054, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 11900/12276] loss=0.1971, lr=0.0000054, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 12000/12276] loss=0.2098, lr=0.0000053, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 12100/12276] loss=0.1852, lr=0.0000053, metrics:accuracy:0.9287
INFO:root:[Epoch 5 Batch 12200/12276] loss=0.2040, lr=0.0000053, metrics:accuracy:0.9286
INFO:root:Now we are doing evaluation on dev_matched with gpu(1).
INFO:root:[Batch 100/1227] loss=0.4472, metrics:accuracy:0.8562
INFO:root:[Batch 200/1227] loss=0.4390, metrics:accuracy:0.8631
INFO:root:[Batch 300/1227] loss=0.4237, metrics:accuracy:0.8692
INFO:root:[Batch 400/1227] loss=0.4050, metrics:accuracy:0.8747
INFO:root:[Batch 500/1227] loss=0.4332, metrics:accuracy:0.8752
INFO:root:[Batch 600/1227] loss=0.3672, metrics:accuracy:0.8781
INFO:root:[Batch 700/1227] loss=0.4698, metrics:accuracy:0.8759
INFO:root:[Batch 800/1227] loss=0.4055, metrics:accuracy:0.8767
INFO:root:[Batch 900/1227] loss=0.4231, metrics:accuracy:0.8760
INFO:root:[Batch 1000/1227] loss=0.4959, metrics:accuracy:0.8741
INFO:root:[Batch 1100/1227] loss=0.4880, metrics:accuracy:0.8731
INFO:root:[Batch 1200/1227] loss=0.4539, metrics:accuracy:0.8726
INFO:root:validation metrics:accuracy:0.8736
INFO:root:Time cost=26.58s, throughput=369.27 samples/s
INFO:root:Now we are doing evaluation on dev_mismatched with gpu(1).
INFO:root:[Batch 100/1229] loss=0.5214, metrics:accuracy:0.8650
INFO:root:[Batch 200/1229] loss=0.4059, metrics:accuracy:0.8681
INFO:root:[Batch 300/1229] loss=0.4111, metrics:accuracy:0.8717
INFO:root:[Batch 400/1229] loss=0.4596, metrics:accuracy:0.8703
INFO:root:[Batch 500/1229] loss=0.4315, metrics:accuracy:0.8702
INFO:root:[Batch 600/1229] loss=0.4226, metrics:accuracy:0.8719
INFO:root:[Batch 700/1229] loss=0.5130, metrics:accuracy:0.8696
INFO:root:[Batch 800/1229] loss=0.4070, metrics:accuracy:0.8703
INFO:root:[Batch 900/1229] loss=0.4665, metrics:accuracy:0.8701
INFO:root:[Batch 1000/1229] loss=0.4349, metrics:accuracy:0.8699
INFO:root:[Batch 1100/1229] loss=0.4761, metrics:accuracy:0.8691
INFO:root:[Batch 1200/1229] loss=0.4817, metrics:accuracy:0.8680
INFO:root:validation metrics:accuracy:0.8685
INFO:root:Time cost=26.59s, throughput=369.80 samples/s
INFO:root:params saved in: ./output_dir/model_bert_MNLI_4.params
INFO:root:Time cost=1800.37s
INFO:root:[Epoch 6 Batch 100/12276] loss=0.1645, lr=0.0000053, metrics:accuracy:0.9444
INFO:root:[Epoch 6 Batch 200/12276] loss=0.1642, lr=0.0000053, metrics:accuracy:0.9439
INFO:root:[Epoch 6 Batch 300/12276] loss=0.1704, lr=0.0000053, metrics:accuracy:0.9432
INFO:root:[Epoch 6 Batch 400/12276] loss=0.1651, lr=0.0000053, metrics:accuracy:0.9433
INFO:root:[Epoch 6 Batch 500/12276] loss=0.1444, lr=0.0000053, metrics:accuracy:0.9453
INFO:root:[Epoch 6 Batch 600/12276] loss=0.1603, lr=0.0000053, metrics:accuracy:0.9447
INFO:root:[Epoch 6 Batch 700/12276] loss=0.1782, lr=0.0000053, metrics:accuracy:0.9440
INFO:root:[Epoch 6 Batch 800/12276] loss=0.1490, lr=0.0000052, metrics:accuracy:0.9445
INFO:root:[Epoch 6 Batch 900/12276] loss=0.1467, lr=0.0000052, metrics:accuracy:0.9452
INFO:root:[Epoch 6 Batch 1000/12276] loss=0.1591, lr=0.0000052, metrics:accuracy:0.9454
INFO:root:[Epoch 6 Batch 1100/12276] loss=0.1545, lr=0.0000052, metrics:accuracy:0.9456
INFO:root:[Epoch 6 Batch 1200/12276] loss=0.1765, lr=0.0000052, metrics:accuracy:0.9449
INFO:root:[Epoch 6 Batch 1300/12276] loss=0.1495, lr=0.0000052, metrics:accuracy:0.9449
INFO:root:[Epoch 6 Batch 1400/12276] loss=0.1496, lr=0.0000052, metrics:accuracy:0.9449
INFO:root:[Epoch 6 Batch 1500/12276] loss=0.1687, lr=0.0000052, metrics:accuracy:0.9448
INFO:root:[Epoch 6 Batch 1600/12276] loss=0.1633, lr=0.0000052, metrics:accuracy:0.9447
INFO:root:[Epoch 6 Batch 1700/12276] loss=0.1800, lr=0.0000052, metrics:accuracy:0.9446
INFO:root:[Epoch 6 Batch 1800/12276] loss=0.1683, lr=0.0000052, metrics:accuracy:0.9443
INFO:root:[Epoch 6 Batch 1900/12276] loss=0.1646, lr=0.0000052, metrics:accuracy:0.9441
INFO:root:[Epoch 6 Batch 2000/12276] loss=0.1521, lr=0.0000051, metrics:accuracy:0.9443
INFO:root:[Epoch 6 Batch 2100/12276] loss=0.1661, lr=0.0000051, metrics:accuracy:0.9443
INFO:root:[Epoch 6 Batch 2200/12276] loss=0.1745, lr=0.0000051, metrics:accuracy:0.9438
INFO:root:[Epoch 6 Batch 2300/12276] loss=0.1705, lr=0.0000051, metrics:accuracy:0.9437
INFO:root:[Epoch 6 Batch 2400/12276] loss=0.1579, lr=0.0000051, metrics:accuracy:0.9438
INFO:root:[Epoch 6 Batch 2500/12276] loss=0.1765, lr=0.0000051, metrics:accuracy:0.9436
INFO:root:[Epoch 6 Batch 2600/12276] loss=0.1577, lr=0.0000051, metrics:accuracy:0.9437
INFO:root:[Epoch 6 Batch 2700/12276] loss=0.1630, lr=0.0000051, metrics:accuracy:0.9438
INFO:root:[Epoch 6 Batch 2800/12276] loss=0.1633, lr=0.0000051, metrics:accuracy:0.9439
INFO:root:[Epoch 6 Batch 2900/12276] loss=0.1590, lr=0.0000051, metrics:accuracy:0.9439
INFO:root:[Epoch 6 Batch 3000/12276] loss=0.1778, lr=0.0000051, metrics:accuracy:0.9438
INFO:root:[Epoch 6 Batch 3100/12276] loss=0.1643, lr=0.0000050, metrics:accuracy:0.9438
INFO:root:[Epoch 6 Batch 3200/12276] loss=0.1881, lr=0.0000050, metrics:accuracy:0.9436
INFO:root:[Epoch 6 Batch 3300/12276] loss=0.1547, lr=0.0000050, metrics:accuracy:0.9436
INFO:root:[Epoch 6 Batch 3400/12276] loss=0.1852, lr=0.0000050, metrics:accuracy:0.9434
INFO:root:[Epoch 6 Batch 3500/12276] loss=0.1747, lr=0.0000050, metrics:accuracy:0.9433
INFO:root:[Epoch 6 Batch 3600/12276] loss=0.1742, lr=0.0000050, metrics:accuracy:0.9433
INFO:root:[Epoch 6 Batch 3700/12276] loss=0.1790, lr=0.0000050, metrics:accuracy:0.9431
INFO:root:[Epoch 6 Batch 3800/12276] loss=0.1706, lr=0.0000050, metrics:accuracy:0.9431
INFO:root:[Epoch 6 Batch 3900/12276] loss=0.1740, lr=0.0000050, metrics:accuracy:0.9430
INFO:root:[Epoch 6 Batch 4000/12276] loss=0.1688, lr=0.0000050, metrics:accuracy:0.9430
INFO:root:[Epoch 6 Batch 4100/12276] loss=0.1798, lr=0.0000050, metrics:accuracy:0.9429
INFO:root:[Epoch 6 Batch 4200/12276] loss=0.1550, lr=0.0000050, metrics:accuracy:0.9430
INFO:root:[Epoch 6 Batch 4300/12276] loss=0.1781, lr=0.0000049, metrics:accuracy:0.9430
INFO:root:[Epoch 6 Batch 4400/12276] loss=0.1624, lr=0.0000049, metrics:accuracy:0.9430
INFO:root:[Epoch 6 Batch 4500/12276] loss=0.1600, lr=0.0000049, metrics:accuracy:0.9430
INFO:root:[Epoch 6 Batch 4600/12276] loss=0.1649, lr=0.0000049, metrics:accuracy:0.9430
INFO:root:[Epoch 6 Batch 4700/12276] loss=0.1807, lr=0.0000049, metrics:accuracy:0.9428
INFO:root:[Epoch 6 Batch 4800/12276] loss=0.1598, lr=0.0000049, metrics:accuracy:0.9428
INFO:root:[Epoch 6 Batch 4900/12276] loss=0.1651, lr=0.0000049, metrics:accuracy:0.9428
INFO:root:[Epoch 6 Batch 5000/12276] loss=0.1578, lr=0.0000049, metrics:accuracy:0.9429
INFO:root:[Epoch 6 Batch 5100/12276] loss=0.1771, lr=0.0000049, metrics:accuracy:0.9428
INFO:root:[Epoch 6 Batch 5200/12276] loss=0.1743, lr=0.0000049, metrics:accuracy:0.9428
INFO:root:[Epoch 6 Batch 5300/12276] loss=0.1545, lr=0.0000049, metrics:accuracy:0.9429
INFO:root:[Epoch 6 Batch 5400/12276] loss=0.1600, lr=0.0000048, metrics:accuracy:0.9429
INFO:root:[Epoch 6 Batch 5500/12276] loss=0.1598, lr=0.0000048, metrics:accuracy:0.9429
INFO:root:[Epoch 6 Batch 5600/12276] loss=0.1731, lr=0.0000048, metrics:accuracy:0.9428
INFO:root:[Epoch 6 Batch 5700/12276] loss=0.1624, lr=0.0000048, metrics:accuracy:0.9428
INFO:root:[Epoch 6 Batch 5800/12276] loss=0.1554, lr=0.0000048, metrics:accuracy:0.9428
INFO:root:[Epoch 6 Batch 5900/12276] loss=0.1675, lr=0.0000048, metrics:accuracy:0.9428
INFO:root:[Epoch 6 Batch 6000/12276] loss=0.1612, lr=0.0000048, metrics:accuracy:0.9429
INFO:root:[Epoch 6 Batch 6100/12276] loss=0.1719, lr=0.0000048, metrics:accuracy:0.9428
INFO:root:[Epoch 6 Batch 6200/12276] loss=0.1717, lr=0.0000048, metrics:accuracy:0.9428
INFO:root:[Epoch 6 Batch 6300/12276] loss=0.1798, lr=0.0000048, metrics:accuracy:0.9427
INFO:root:[Epoch 6 Batch 6400/12276] loss=0.1512, lr=0.0000048, metrics:accuracy:0.9427
INFO:root:[Epoch 6 Batch 6500/12276] loss=0.1631, lr=0.0000048, metrics:accuracy:0.9428
INFO:root:[Epoch 6 Batch 6600/12276] loss=0.1873, lr=0.0000047, metrics:accuracy:0.9427
INFO:root:[Epoch 6 Batch 6700/12276] loss=0.1702, lr=0.0000047, metrics:accuracy:0.9427
INFO:root:[Epoch 6 Batch 6800/12276] loss=0.1827, lr=0.0000047, metrics:accuracy:0.9426
INFO:root:[Epoch 6 Batch 6900/12276] loss=0.1740, lr=0.0000047, metrics:accuracy:0.9425
INFO:root:[Epoch 6 Batch 7000/12276] loss=0.1652, lr=0.0000047, metrics:accuracy:0.9425
INFO:root:[Epoch 6 Batch 7100/12276] loss=0.1530, lr=0.0000047, metrics:accuracy:0.9426
INFO:root:[Epoch 6 Batch 7200/12276] loss=0.1850, lr=0.0000047, metrics:accuracy:0.9425
INFO:root:[Epoch 6 Batch 7300/12276] loss=0.1639, lr=0.0000047, metrics:accuracy:0.9426
INFO:root:[Epoch 6 Batch 7400/12276] loss=0.1907, lr=0.0000047, metrics:accuracy:0.9424
INFO:root:[Epoch 6 Batch 7500/12276] loss=0.1628, lr=0.0000047, metrics:accuracy:0.9425
INFO:root:[Epoch 6 Batch 7600/12276] loss=0.1879, lr=0.0000047, metrics:accuracy:0.9424
INFO:root:[Epoch 6 Batch 7700/12276] loss=0.1529, lr=0.0000046, metrics:accuracy:0.9425
INFO:root:[Epoch 6 Batch 7800/12276] loss=0.1802, lr=0.0000046, metrics:accuracy:0.9424
INFO:root:[Epoch 6 Batch 7900/12276] loss=0.1538, lr=0.0000046, metrics:accuracy:0.9426
INFO:root:[Epoch 6 Batch 8000/12276] loss=0.1959, lr=0.0000046, metrics:accuracy:0.9424
INFO:root:[Epoch 6 Batch 8100/12276] loss=0.1697, lr=0.0000046, metrics:accuracy:0.9424
INFO:root:[Epoch 6 Batch 8200/12276] loss=0.1658, lr=0.0000046, metrics:accuracy:0.9425
INFO:root:[Epoch 6 Batch 8300/12276] loss=0.1694, lr=0.0000046, metrics:accuracy:0.9424
INFO:root:[Epoch 6 Batch 8400/12276] loss=0.1650, lr=0.0000046, metrics:accuracy:0.9424
INFO:root:[Epoch 6 Batch 8500/12276] loss=0.1719, lr=0.0000046, metrics:accuracy:0.9424
INFO:root:[Epoch 6 Batch 8600/12276] loss=0.1663, lr=0.0000046, metrics:accuracy:0.9424
INFO:root:[Epoch 6 Batch 8700/12276] loss=0.1804, lr=0.0000046, metrics:accuracy:0.9423
INFO:root:[Epoch 6 Batch 8800/12276] loss=0.1596, lr=0.0000046, metrics:accuracy:0.9423
INFO:root:[Epoch 6 Batch 8900/12276] loss=0.1876, lr=0.0000045, metrics:accuracy:0.9422
INFO:root:[Epoch 6 Batch 9000/12276] loss=0.1514, lr=0.0000045, metrics:accuracy:0.9422
INFO:root:[Epoch 6 Batch 9100/12276] loss=0.1514, lr=0.0000045, metrics:accuracy:0.9423
INFO:root:[Epoch 6 Batch 9200/12276] loss=0.1652, lr=0.0000045, metrics:accuracy:0.9423
INFO:root:[Epoch 6 Batch 9300/12276] loss=0.1707, lr=0.0000045, metrics:accuracy:0.9422
INFO:root:[Epoch 6 Batch 9400/12276] loss=0.1723, lr=0.0000045, metrics:accuracy:0.9422
INFO:root:[Epoch 6 Batch 9500/12276] loss=0.1719, lr=0.0000045, metrics:accuracy:0.9422
INFO:root:[Epoch 6 Batch 9600/12276] loss=0.1622, lr=0.0000045, metrics:accuracy:0.9422
INFO:root:[Epoch 6 Batch 9700/12276] loss=0.1615, lr=0.0000045, metrics:accuracy:0.9422
INFO:root:[Epoch 6 Batch 9800/12276] loss=0.1869, lr=0.0000045, metrics:accuracy:0.9421
INFO:root:[Epoch 6 Batch 9900/12276] loss=0.1771, lr=0.0000045, metrics:accuracy:0.9420
INFO:root:[Epoch 6 Batch 10000/12276] loss=0.1669, lr=0.0000045, metrics:accuracy:0.9420
INFO:root:[Epoch 6 Batch 10100/12276] loss=0.1714, lr=0.0000044, metrics:accuracy:0.9420
INFO:root:[Epoch 6 Batch 10200/12276] loss=0.1826, lr=0.0000044, metrics:accuracy:0.9419
INFO:root:[Epoch 6 Batch 10300/12276] loss=0.1641, lr=0.0000044, metrics:accuracy:0.9419
INFO:root:[Epoch 6 Batch 10400/12276] loss=0.1735, lr=0.0000044, metrics:accuracy:0.9419
INFO:root:[Epoch 6 Batch 10500/12276] loss=0.1855, lr=0.0000044, metrics:accuracy:0.9418
INFO:root:[Epoch 6 Batch 10600/12276] loss=0.1696, lr=0.0000044, metrics:accuracy:0.9418
INFO:root:[Epoch 6 Batch 10700/12276] loss=0.1782, lr=0.0000044, metrics:accuracy:0.9418
INFO:root:[Epoch 6 Batch 10800/12276] loss=0.1532, lr=0.0000044, metrics:accuracy:0.9418
INFO:root:[Epoch 6 Batch 10900/12276] loss=0.1793, lr=0.0000044, metrics:accuracy:0.9417
INFO:root:[Epoch 6 Batch 11000/12276] loss=0.1680, lr=0.0000044, metrics:accuracy:0.9417
INFO:root:[Epoch 6 Batch 11100/12276] loss=0.1732, lr=0.0000044, metrics:accuracy:0.9417
INFO:root:[Epoch 6 Batch 11200/12276] loss=0.1775, lr=0.0000043, metrics:accuracy:0.9416
INFO:root:[Epoch 6 Batch 11300/12276] loss=0.1552, lr=0.0000043, metrics:accuracy:0.9416
INFO:root:[Epoch 6 Batch 11400/12276] loss=0.1598, lr=0.0000043, metrics:accuracy:0.9417
INFO:root:[Epoch 6 Batch 11500/12276] loss=0.1807, lr=0.0000043, metrics:accuracy:0.9416
INFO:root:[Epoch 6 Batch 11600/12276] loss=0.1854, lr=0.0000043, metrics:accuracy:0.9415
INFO:root:[Epoch 6 Batch 11700/12276] loss=0.1653, lr=0.0000043, metrics:accuracy:0.9415
INFO:root:[Epoch 6 Batch 11800/12276] loss=0.1708, lr=0.0000043, metrics:accuracy:0.9415
INFO:root:[Epoch 6 Batch 11900/12276] loss=0.1686, lr=0.0000043, metrics:accuracy:0.9415
INFO:root:[Epoch 6 Batch 12000/12276] loss=0.1844, lr=0.0000043, metrics:accuracy:0.9414
INFO:root:[Epoch 6 Batch 12100/12276] loss=0.1664, lr=0.0000043, metrics:accuracy:0.9414
INFO:root:[Epoch 6 Batch 12200/12276] loss=0.1608, lr=0.0000043, metrics:accuracy:0.9415
INFO:root:Now we are doing evaluation on dev_matched with gpu(1).
INFO:root:[Batch 100/1227] loss=0.4476, metrics:accuracy:0.8675
INFO:root:[Batch 200/1227] loss=0.4832, metrics:accuracy:0.8662
INFO:root:[Batch 300/1227] loss=0.4672, metrics:accuracy:0.8683
INFO:root:[Batch 400/1227] loss=0.4602, metrics:accuracy:0.8725
INFO:root:[Batch 500/1227] loss=0.4812, metrics:accuracy:0.8738
INFO:root:[Batch 600/1227] loss=0.4100, metrics:accuracy:0.8767
INFO:root:[Batch 700/1227] loss=0.5177, metrics:accuracy:0.8739
INFO:root:[Batch 800/1227] loss=0.4583, metrics:accuracy:0.8756
INFO:root:[Batch 900/1227] loss=0.4306, metrics:accuracy:0.8758
INFO:root:[Batch 1000/1227] loss=0.5124, metrics:accuracy:0.8736
INFO:root:[Batch 1100/1227] loss=0.5245, metrics:accuracy:0.8730
INFO:root:[Batch 1200/1227] loss=0.5045, metrics:accuracy:0.8730
INFO:root:validation metrics:accuracy:0.8738
INFO:root:Time cost=27.04s, throughput=363.04 samples/s
INFO:root:Now we are doing evaluation on dev_mismatched with gpu(1).
INFO:root:[Batch 100/1229] loss=0.5452, metrics:accuracy:0.8625
INFO:root:[Batch 200/1229] loss=0.4795, metrics:accuracy:0.8631
INFO:root:[Batch 300/1229] loss=0.4656, metrics:accuracy:0.8688
INFO:root:[Batch 400/1229] loss=0.4844, metrics:accuracy:0.8694
INFO:root:[Batch 500/1229] loss=0.4685, metrics:accuracy:0.8708
INFO:root:[Batch 600/1229] loss=0.4526, metrics:accuracy:0.8727
INFO:root:[Batch 700/1229] loss=0.5438, metrics:accuracy:0.8691
INFO:root:[Batch 800/1229] loss=0.4401, metrics:accuracy:0.8686
INFO:root:[Batch 900/1229] loss=0.4934, metrics:accuracy:0.8686
INFO:root:[Batch 1000/1229] loss=0.4552, metrics:accuracy:0.8684
INFO:root:[Batch 1100/1229] loss=0.5071, metrics:accuracy:0.8685
INFO:root:[Batch 1200/1229] loss=0.5295, metrics:accuracy:0.8677
INFO:root:validation metrics:accuracy:0.8681
INFO:root:Time cost=26.70s, throughput=368.22 samples/s
INFO:root:params saved in: ./output_dir/model_bert_MNLI_5.params
INFO:root:Time cost=1805.46s
INFO:root:[Epoch 7 Batch 100/12276] loss=0.1285, lr=0.0000042, metrics:accuracy:0.9559
INFO:root:[Epoch 7 Batch 200/12276] loss=0.1515, lr=0.0000042, metrics:accuracy:0.9531
INFO:root:[Epoch 7 Batch 300/12276] loss=0.1303, lr=0.0000042, metrics:accuracy:0.9539
INFO:root:[Epoch 7 Batch 400/12276] loss=0.1401, lr=0.0000042, metrics:accuracy:0.9533
INFO:root:[Epoch 7 Batch 500/12276] loss=0.1327, lr=0.0000042, metrics:accuracy:0.9532
INFO:root:[Epoch 7 Batch 600/12276] loss=0.1373, lr=0.0000042, metrics:accuracy:0.9529
INFO:root:[Epoch 7 Batch 700/12276] loss=0.1508, lr=0.0000042, metrics:accuracy:0.9530
INFO:root:[Epoch 7 Batch 800/12276] loss=0.1445, lr=0.0000042, metrics:accuracy:0.9529
INFO:root:[Epoch 7 Batch 900/12276] loss=0.1487, lr=0.0000042, metrics:accuracy:0.9527
INFO:root:[Epoch 7 Batch 1000/12276] loss=0.1329, lr=0.0000042, metrics:accuracy:0.9528
INFO:root:[Epoch 7 Batch 1100/12276] loss=0.1593, lr=0.0000042, metrics:accuracy:0.9521
INFO:root:[Epoch 7 Batch 1200/12276] loss=0.1403, lr=0.0000041, metrics:accuracy:0.9521
INFO:root:[Epoch 7 Batch 1300/12276] loss=0.1259, lr=0.0000041, metrics:accuracy:0.9526
INFO:root:[Epoch 7 Batch 1400/12276] loss=0.1435, lr=0.0000041, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 1500/12276] loss=0.1484, lr=0.0000041, metrics:accuracy:0.9521
INFO:root:[Epoch 7 Batch 1600/12276] loss=0.1482, lr=0.0000041, metrics:accuracy:0.9521
INFO:root:[Epoch 7 Batch 1700/12276] loss=0.1440, lr=0.0000041, metrics:accuracy:0.9522
INFO:root:[Epoch 7 Batch 1800/12276] loss=0.1384, lr=0.0000041, metrics:accuracy:0.9522
INFO:root:[Epoch 7 Batch 1900/12276] loss=0.1542, lr=0.0000041, metrics:accuracy:0.9520
INFO:root:[Epoch 7 Batch 2000/12276] loss=0.1574, lr=0.0000041, metrics:accuracy:0.9518
INFO:root:[Epoch 7 Batch 2100/12276] loss=0.1436, lr=0.0000041, metrics:accuracy:0.9518
INFO:root:[Epoch 7 Batch 2200/12276] loss=0.1251, lr=0.0000041, metrics:accuracy:0.9521
INFO:root:[Epoch 7 Batch 2300/12276] loss=0.1311, lr=0.0000041, metrics:accuracy:0.9522
INFO:root:[Epoch 7 Batch 2400/12276] loss=0.1333, lr=0.0000040, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 2500/12276] loss=0.1308, lr=0.0000040, metrics:accuracy:0.9526
INFO:root:[Epoch 7 Batch 2600/12276] loss=0.1455, lr=0.0000040, metrics:accuracy:0.9525
INFO:root:[Epoch 7 Batch 2700/12276] loss=0.1423, lr=0.0000040, metrics:accuracy:0.9525
INFO:root:[Epoch 7 Batch 2800/12276] loss=0.1455, lr=0.0000040, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 2900/12276] loss=0.1408, lr=0.0000040, metrics:accuracy:0.9525
INFO:root:[Epoch 7 Batch 3000/12276] loss=0.1498, lr=0.0000040, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 3100/12276] loss=0.1578, lr=0.0000040, metrics:accuracy:0.9522
INFO:root:[Epoch 7 Batch 3200/12276] loss=0.1383, lr=0.0000040, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 3300/12276] loss=0.1664, lr=0.0000040, metrics:accuracy:0.9521
INFO:root:[Epoch 7 Batch 3400/12276] loss=0.1310, lr=0.0000040, metrics:accuracy:0.9521
INFO:root:[Epoch 7 Batch 3500/12276] loss=0.1466, lr=0.0000039, metrics:accuracy:0.9522
INFO:root:[Epoch 7 Batch 3600/12276] loss=0.1362, lr=0.0000039, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 3700/12276] loss=0.1440, lr=0.0000039, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 3800/12276] loss=0.1549, lr=0.0000039, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 3900/12276] loss=0.1278, lr=0.0000039, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 4000/12276] loss=0.1509, lr=0.0000039, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 4100/12276] loss=0.1447, lr=0.0000039, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 4200/12276] loss=0.1257, lr=0.0000039, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 4300/12276] loss=0.1358, lr=0.0000039, metrics:accuracy:0.9525
INFO:root:[Epoch 7 Batch 4400/12276] loss=0.1297, lr=0.0000039, metrics:accuracy:0.9525
INFO:root:[Epoch 7 Batch 4500/12276] loss=0.1622, lr=0.0000039, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 4600/12276] loss=0.1346, lr=0.0000039, metrics:accuracy:0.9525
INFO:root:[Epoch 7 Batch 4700/12276] loss=0.1541, lr=0.0000038, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 4800/12276] loss=0.1352, lr=0.0000038, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 4900/12276] loss=0.1429, lr=0.0000038, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 5000/12276] loss=0.1421, lr=0.0000038, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 5100/12276] loss=0.1569, lr=0.0000038, metrics:accuracy:0.9522
INFO:root:[Epoch 7 Batch 5200/12276] loss=0.1292, lr=0.0000038, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 5300/12276] loss=0.1383, lr=0.0000038, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 5400/12276] loss=0.1330, lr=0.0000038, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 5500/12276] loss=0.1465, lr=0.0000038, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 5600/12276] loss=0.1417, lr=0.0000038, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 5700/12276] loss=0.1370, lr=0.0000038, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 5800/12276] loss=0.1399, lr=0.0000038, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 5900/12276] loss=0.1380, lr=0.0000037, metrics:accuracy:0.9522
INFO:root:[Epoch 7 Batch 6000/12276] loss=0.1491, lr=0.0000037, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 6100/12276] loss=0.1334, lr=0.0000037, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 6200/12276] loss=0.1500, lr=0.0000037, metrics:accuracy:0.9524
INFO:root:[Epoch 7 Batch 6300/12276] loss=0.1592, lr=0.0000037, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 6400/12276] loss=0.1468, lr=0.0000037, metrics:accuracy:0.9522
INFO:root:[Epoch 7 Batch 6500/12276] loss=0.1307, lr=0.0000037, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 6600/12276] loss=0.1441, lr=0.0000037, metrics:accuracy:0.9522
INFO:root:[Epoch 7 Batch 6700/12276] loss=0.1378, lr=0.0000037, metrics:accuracy:0.9522
INFO:root:[Epoch 7 Batch 6800/12276] loss=0.1347, lr=0.0000037, metrics:accuracy:0.9523
INFO:root:[Epoch 7 Batch 6900/12276] loss=0.1559, lr=0.0000037, metrics:accuracy:0.9522
INFO:root:[Epoch 7 Batch 7000/12276] loss=0.1361, lr=0.0000036, metrics:accuracy:0.9522
INFO:root:[Epoch 7 Batch 7100/12276] loss=0.1622, lr=0.0000036, metrics:accuracy:0.9521
INFO:root:[Epoch 7 Batch 7200/12276] loss=0.1376, lr=0.0000036, metrics:accuracy:0.9521
INFO:root:[Epoch 7 Batch 7300/12276] loss=0.1462, lr=0.0000036, metrics:accuracy:0.9521
INFO:root:[Epoch 7 Batch 7400/12276] loss=0.1497, lr=0.0000036, metrics:accuracy:0.9520
INFO:root:[Epoch 7 Batch 7500/12276] loss=0.1498, lr=0.0000036, metrics:accuracy:0.9520
INFO:root:[Epoch 7 Batch 7600/12276] loss=0.1503, lr=0.0000036, metrics:accuracy:0.9520
INFO:root:[Epoch 7 Batch 7700/12276] loss=0.1407, lr=0.0000036, metrics:accuracy:0.9520
INFO:root:[Epoch 7 Batch 7800/12276] loss=0.1333, lr=0.0000036, metrics:accuracy:0.9520
INFO:root:[Epoch 7 Batch 7900/12276] loss=0.1745, lr=0.0000036, metrics:accuracy:0.9519
INFO:root:[Epoch 7 Batch 8000/12276] loss=0.1294, lr=0.0000036, metrics:accuracy:0.9519
INFO:root:[Epoch 7 Batch 8100/12276] loss=0.1355, lr=0.0000036, metrics:accuracy:0.9520
INFO:root:[Epoch 7 Batch 8200/12276] loss=0.1328, lr=0.0000035, metrics:accuracy:0.9520
INFO:root:[Epoch 7 Batch 8300/12276] loss=0.1435, lr=0.0000035, metrics:accuracy:0.9520
INFO:root:[Epoch 7 Batch 8400/12276] loss=0.1487, lr=0.0000035, metrics:accuracy:0.9520
INFO:root:[Epoch 7 Batch 8500/12276] loss=0.1339, lr=0.0000035, metrics:accuracy:0.9520
INFO:root:[Epoch 7 Batch 8600/12276] loss=0.1288, lr=0.0000035, metrics:accuracy:0.9521
INFO:root:[Epoch 7 Batch 8700/12276] loss=0.1538, lr=0.0000035, metrics:accuracy:0.9521
INFO:root:[Epoch 7 Batch 8800/12276] loss=0.1585, lr=0.0000035, metrics:accuracy:0.9519
INFO:root:[Epoch 7 Batch 8900/12276] loss=0.1428, lr=0.0000035, metrics:accuracy:0.9519
INFO:root:[Epoch 7 Batch 9000/12276] loss=0.1557, lr=0.0000035, metrics:accuracy:0.9519
INFO:root:[Epoch 7 Batch 9100/12276] loss=0.1360, lr=0.0000035, metrics:accuracy:0.9519
INFO:root:[Epoch 7 Batch 9200/12276] loss=0.1458, lr=0.0000035, metrics:accuracy:0.9519
INFO:root:[Epoch 7 Batch 9300/12276] loss=0.1366, lr=0.0000034, metrics:accuracy:0.9519
INFO:root:[Epoch 7 Batch 9400/12276] loss=0.1429, lr=0.0000034, metrics:accuracy:0.9519
INFO:root:[Epoch 7 Batch 9500/12276] loss=0.1523, lr=0.0000034, metrics:accuracy:0.9518
INFO:root:[Epoch 7 Batch 9600/12276] loss=0.1519, lr=0.0000034, metrics:accuracy:0.9518
INFO:root:[Epoch 7 Batch 9700/12276] loss=0.1455, lr=0.0000034, metrics:accuracy:0.9518
INFO:root:[Epoch 7 Batch 9800/12276] loss=0.1553, lr=0.0000034, metrics:accuracy:0.9517
INFO:root:[Epoch 7 Batch 9900/12276] loss=0.1599, lr=0.0000034, metrics:accuracy:0.9517
INFO:root:[Epoch 7 Batch 10000/12276] loss=0.1375, lr=0.0000034, metrics:accuracy:0.9517
INFO:root:[Epoch 7 Batch 10100/12276] loss=0.1401, lr=0.0000034, metrics:accuracy:0.9517
INFO:root:[Epoch 7 Batch 10200/12276] loss=0.1320, lr=0.0000034, metrics:accuracy:0.9517
INFO:root:[Epoch 7 Batch 10300/12276] loss=0.1518, lr=0.0000034, metrics:accuracy:0.9517
INFO:root:[Epoch 7 Batch 10400/12276] loss=0.1378, lr=0.0000034, metrics:accuracy:0.9517
INFO:root:[Epoch 7 Batch 10500/12276] loss=0.1478, lr=0.0000033, metrics:accuracy:0.9517
INFO:root:[Epoch 7 Batch 10600/12276] loss=0.1501, lr=0.0000033, metrics:accuracy:0.9517
INFO:root:[Epoch 7 Batch 10700/12276] loss=0.1298, lr=0.0000033, metrics:accuracy:0.9517
INFO:root:[Epoch 7 Batch 10800/12276] loss=0.1659, lr=0.0000033, metrics:accuracy:0.9516
INFO:root:[Epoch 7 Batch 10900/12276] loss=0.1423, lr=0.0000033, metrics:accuracy:0.9516
INFO:root:[Epoch 7 Batch 11000/12276] loss=0.1327, lr=0.0000033, metrics:accuracy:0.9517
INFO:root:[Epoch 7 Batch 11100/12276] loss=0.1498, lr=0.0000033, metrics:accuracy:0.9517
INFO:root:[Epoch 7 Batch 11200/12276] loss=0.1380, lr=0.0000033, metrics:accuracy:0.9517
INFO:root:[Epoch 7 Batch 11300/12276] loss=0.1466, lr=0.0000033, metrics:accuracy:0.9517
INFO:root:[Epoch 7 Batch 11400/12276] loss=0.1390, lr=0.0000033, metrics:accuracy:0.9518
INFO:root:[Epoch 7 Batch 11500/12276] loss=0.1262, lr=0.0000033, metrics:accuracy:0.9518
INFO:root:[Epoch 7 Batch 11600/12276] loss=0.1480, lr=0.0000032, metrics:accuracy:0.9518
INFO:root:[Epoch 7 Batch 11700/12276] loss=0.1716, lr=0.0000032, metrics:accuracy:0.9518
INFO:root:[Epoch 7 Batch 11800/12276] loss=0.1446, lr=0.0000032, metrics:accuracy:0.9518
INFO:root:[Epoch 7 Batch 11900/12276] loss=0.1494, lr=0.0000032, metrics:accuracy:0.9518
INFO:root:[Epoch 7 Batch 12000/12276] loss=0.1192, lr=0.0000032, metrics:accuracy:0.9518
INFO:root:[Epoch 7 Batch 12100/12276] loss=0.1344, lr=0.0000032, metrics:accuracy:0.9519
INFO:root:[Epoch 7 Batch 12200/12276] loss=0.1379, lr=0.0000032, metrics:accuracy:0.9519
INFO:root:Now we are doing evaluation on dev_matched with gpu(1).
INFO:root:[Batch 100/1227] loss=0.5484, metrics:accuracy:0.8600
INFO:root:[Batch 200/1227] loss=0.5489, metrics:accuracy:0.8631
INFO:root:[Batch 300/1227] loss=0.5227, metrics:accuracy:0.8696
INFO:root:[Batch 400/1227] loss=0.5229, metrics:accuracy:0.8719
INFO:root:[Batch 500/1227] loss=0.5449, metrics:accuracy:0.8732
INFO:root:[Batch 600/1227] loss=0.4837, metrics:accuracy:0.8769
INFO:root:[Batch 700/1227] loss=0.5872, metrics:accuracy:0.8754
INFO:root:[Batch 800/1227] loss=0.5188, metrics:accuracy:0.8758
INFO:root:[Batch 900/1227] loss=0.5266, metrics:accuracy:0.8761
INFO:root:[Batch 1000/1227] loss=0.6162, metrics:accuracy:0.8744
INFO:root:[Batch 1100/1227] loss=0.6255, metrics:accuracy:0.8727
INFO:root:[Batch 1200/1227] loss=0.5899, metrics:accuracy:0.8726
INFO:root:validation metrics:accuracy:0.8733
INFO:root:Time cost=27.43s, throughput=357.91 samples/s
INFO:root:Now we are doing evaluation on dev_mismatched with gpu(1).
INFO:root:[Batch 100/1229] loss=0.6091, metrics:accuracy:0.8575
INFO:root:[Batch 200/1229] loss=0.5571, metrics:accuracy:0.8644
INFO:root:[Batch 300/1229] loss=0.5414, metrics:accuracy:0.8679
INFO:root:[Batch 400/1229] loss=0.5513, metrics:accuracy:0.8688
INFO:root:[Batch 500/1229] loss=0.5432, metrics:accuracy:0.8690
INFO:root:[Batch 600/1229] loss=0.5127, metrics:accuracy:0.8719
INFO:root:[Batch 700/1229] loss=0.6342, metrics:accuracy:0.8693
INFO:root:[Batch 800/1229] loss=0.5152, metrics:accuracy:0.8697
INFO:root:[Batch 900/1229] loss=0.5724, metrics:accuracy:0.8693
INFO:root:[Batch 1000/1229] loss=0.5425, metrics:accuracy:0.8688
INFO:root:[Batch 1100/1229] loss=0.6138, metrics:accuracy:0.8683
INFO:root:[Batch 1200/1229] loss=0.6049, metrics:accuracy:0.8674
INFO:root:validation metrics:accuracy:0.8681
INFO:root:Time cost=27.99s, throughput=351.24 samples/s
INFO:root:params saved in: ./output_dir/model_bert_MNLI_6.params
INFO:root:Time cost=1888.59s
INFO:root:[Epoch 8 Batch 100/12276] loss=0.1257, lr=0.0000032, metrics:accuracy:0.9584
INFO:root:[Epoch 8 Batch 200/12276] loss=0.1139, lr=0.0000032, metrics:accuracy:0.9587
INFO:root:[Epoch 8 Batch 300/12276] loss=0.1281, lr=0.0000032, metrics:accuracy:0.9576
INFO:root:[Epoch 8 Batch 400/12276] loss=0.1190, lr=0.0000032, metrics:accuracy:0.9584
INFO:root:[Epoch 8 Batch 500/12276] loss=0.0946, lr=0.0000031, metrics:accuracy:0.9601
INFO:root:[Epoch 8 Batch 600/12276] loss=0.1203, lr=0.0000031, metrics:accuracy:0.9601
INFO:root:[Epoch 8 Batch 700/12276] loss=0.1132, lr=0.0000031, metrics:accuracy:0.9605
INFO:root:[Epoch 8 Batch 800/12276] loss=0.1431, lr=0.0000031, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 900/12276] loss=0.1305, lr=0.0000031, metrics:accuracy:0.9592
INFO:root:[Epoch 8 Batch 1000/12276] loss=0.1381, lr=0.0000031, metrics:accuracy:0.9587
INFO:root:[Epoch 8 Batch 1100/12276] loss=0.1253, lr=0.0000031, metrics:accuracy:0.9584
INFO:root:[Epoch 8 Batch 1200/12276] loss=0.1144, lr=0.0000031, metrics:accuracy:0.9586
INFO:root:[Epoch 8 Batch 1300/12276] loss=0.1201, lr=0.0000031, metrics:accuracy:0.9590
INFO:root:[Epoch 8 Batch 1400/12276] loss=0.1350, lr=0.0000031, metrics:accuracy:0.9588
INFO:root:[Epoch 8 Batch 1500/12276] loss=0.1240, lr=0.0000031, metrics:accuracy:0.9586
INFO:root:[Epoch 8 Batch 1600/12276] loss=0.1222, lr=0.0000031, metrics:accuracy:0.9587
INFO:root:[Epoch 8 Batch 1700/12276] loss=0.1335, lr=0.0000030, metrics:accuracy:0.9587
INFO:root:[Epoch 8 Batch 1800/12276] loss=0.1209, lr=0.0000030, metrics:accuracy:0.9587
INFO:root:[Epoch 8 Batch 1900/12276] loss=0.1040, lr=0.0000030, metrics:accuracy:0.9592
INFO:root:[Epoch 8 Batch 2000/12276] loss=0.1244, lr=0.0000030, metrics:accuracy:0.9593
INFO:root:[Epoch 8 Batch 2100/12276] loss=0.1324, lr=0.0000030, metrics:accuracy:0.9592
INFO:root:[Epoch 8 Batch 2200/12276] loss=0.1257, lr=0.0000030, metrics:accuracy:0.9594
INFO:root:[Epoch 8 Batch 2300/12276] loss=0.1278, lr=0.0000030, metrics:accuracy:0.9594
INFO:root:[Epoch 8 Batch 2400/12276] loss=0.1387, lr=0.0000030, metrics:accuracy:0.9594
INFO:root:[Epoch 8 Batch 2500/12276] loss=0.1245, lr=0.0000030, metrics:accuracy:0.9593
INFO:root:[Epoch 8 Batch 2600/12276] loss=0.1310, lr=0.0000030, metrics:accuracy:0.9592
INFO:root:[Epoch 8 Batch 2700/12276] loss=0.1099, lr=0.0000030, metrics:accuracy:0.9593
INFO:root:[Epoch 8 Batch 2800/12276] loss=0.1014, lr=0.0000029, metrics:accuracy:0.9596
INFO:root:[Epoch 8 Batch 2900/12276] loss=0.1222, lr=0.0000029, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 3000/12276] loss=0.1188, lr=0.0000029, metrics:accuracy:0.9599
INFO:root:[Epoch 8 Batch 3100/12276] loss=0.1236, lr=0.0000029, metrics:accuracy:0.9600
INFO:root:[Epoch 8 Batch 3200/12276] loss=0.1344, lr=0.0000029, metrics:accuracy:0.9600
INFO:root:[Epoch 8 Batch 3300/12276] loss=0.1189, lr=0.0000029, metrics:accuracy:0.9600
INFO:root:[Epoch 8 Batch 3400/12276] loss=0.1206, lr=0.0000029, metrics:accuracy:0.9601
INFO:root:[Epoch 8 Batch 3500/12276] loss=0.1245, lr=0.0000029, metrics:accuracy:0.9600
INFO:root:[Epoch 8 Batch 3600/12276] loss=0.1108, lr=0.0000029, metrics:accuracy:0.9601
INFO:root:[Epoch 8 Batch 3700/12276] loss=0.1393, lr=0.0000029, metrics:accuracy:0.9600
INFO:root:[Epoch 8 Batch 3800/12276] loss=0.1297, lr=0.0000029, metrics:accuracy:0.9599
INFO:root:[Epoch 8 Batch 3900/12276] loss=0.1170, lr=0.0000029, metrics:accuracy:0.9600
INFO:root:[Epoch 8 Batch 4000/12276] loss=0.1276, lr=0.0000028, metrics:accuracy:0.9600
INFO:root:[Epoch 8 Batch 4100/12276] loss=0.1526, lr=0.0000028, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 4200/12276] loss=0.1170, lr=0.0000028, metrics:accuracy:0.9599
INFO:root:[Epoch 8 Batch 4300/12276] loss=0.1317, lr=0.0000028, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 4400/12276] loss=0.1196, lr=0.0000028, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 4500/12276] loss=0.1283, lr=0.0000028, metrics:accuracy:0.9597
INFO:root:[Epoch 8 Batch 4600/12276] loss=0.1282, lr=0.0000028, metrics:accuracy:0.9597
INFO:root:[Epoch 8 Batch 4700/12276] loss=0.1237, lr=0.0000028, metrics:accuracy:0.9597
INFO:root:[Epoch 8 Batch 4800/12276] loss=0.1195, lr=0.0000028, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 4900/12276] loss=0.1377, lr=0.0000028, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 5000/12276] loss=0.1198, lr=0.0000028, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 5100/12276] loss=0.1170, lr=0.0000027, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 5200/12276] loss=0.1220, lr=0.0000027, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 5300/12276] loss=0.1298, lr=0.0000027, metrics:accuracy:0.9599
INFO:root:[Epoch 8 Batch 5400/12276] loss=0.1387, lr=0.0000027, metrics:accuracy:0.9599
INFO:root:[Epoch 8 Batch 5500/12276] loss=0.1344, lr=0.0000027, metrics:accuracy:0.9599
INFO:root:[Epoch 8 Batch 5600/12276] loss=0.1312, lr=0.0000027, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 5700/12276] loss=0.1333, lr=0.0000027, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 5800/12276] loss=0.1234, lr=0.0000027, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 5900/12276] loss=0.1208, lr=0.0000027, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 6000/12276] loss=0.1299, lr=0.0000027, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 6100/12276] loss=0.1240, lr=0.0000027, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 6200/12276] loss=0.1060, lr=0.0000027, metrics:accuracy:0.9599
INFO:root:[Epoch 8 Batch 6300/12276] loss=0.1273, lr=0.0000026, metrics:accuracy:0.9599
INFO:root:[Epoch 8 Batch 6400/12276] loss=0.1183, lr=0.0000026, metrics:accuracy:0.9599
INFO:root:[Epoch 8 Batch 6500/12276] loss=0.1318, lr=0.0000026, metrics:accuracy:0.9599
INFO:root:[Epoch 8 Batch 6600/12276] loss=0.1299, lr=0.0000026, metrics:accuracy:0.9599
INFO:root:[Epoch 8 Batch 6700/12276] loss=0.1135, lr=0.0000026, metrics:accuracy:0.9599
INFO:root:[Epoch 8 Batch 6800/12276] loss=0.1167, lr=0.0000026, metrics:accuracy:0.9599
INFO:root:[Epoch 8 Batch 6900/12276] loss=0.1253, lr=0.0000026, metrics:accuracy:0.9600
INFO:root:[Epoch 8 Batch 7000/12276] loss=0.1186, lr=0.0000026, metrics:accuracy:0.9600
INFO:root:[Epoch 8 Batch 7100/12276] loss=0.1406, lr=0.0000026, metrics:accuracy:0.9600
INFO:root:[Epoch 8 Batch 7200/12276] loss=0.1181, lr=0.0000026, metrics:accuracy:0.9600
INFO:root:[Epoch 8 Batch 7300/12276] loss=0.1242, lr=0.0000026, metrics:accuracy:0.9600
INFO:root:[Epoch 8 Batch 7400/12276] loss=0.1282, lr=0.0000025, metrics:accuracy:0.9599
INFO:root:[Epoch 8 Batch 7500/12276] loss=0.1236, lr=0.0000025, metrics:accuracy:0.9600
INFO:root:[Epoch 8 Batch 7600/12276] loss=0.1136, lr=0.0000025, metrics:accuracy:0.9600
INFO:root:[Epoch 8 Batch 7700/12276] loss=0.1271, lr=0.0000025, metrics:accuracy:0.9600
INFO:root:[Epoch 8 Batch 7800/12276] loss=0.1150, lr=0.0000025, metrics:accuracy:0.9600
INFO:root:[Epoch 8 Batch 7900/12276] loss=0.1112, lr=0.0000025, metrics:accuracy:0.9601
INFO:root:[Epoch 8 Batch 8000/12276] loss=0.1126, lr=0.0000025, metrics:accuracy:0.9601
INFO:root:[Epoch 8 Batch 8100/12276] loss=0.1127, lr=0.0000025, metrics:accuracy:0.9601
INFO:root:[Epoch 8 Batch 8200/12276] loss=0.1228, lr=0.0000025, metrics:accuracy:0.9602
INFO:root:[Epoch 8 Batch 8300/12276] loss=0.1396, lr=0.0000025, metrics:accuracy:0.9601
INFO:root:[Epoch 8 Batch 8400/12276] loss=0.1309, lr=0.0000025, metrics:accuracy:0.9601
INFO:root:[Epoch 8 Batch 8500/12276] loss=0.1149, lr=0.0000025, metrics:accuracy:0.9601
INFO:root:[Epoch 8 Batch 8600/12276] loss=0.1392, lr=0.0000024, metrics:accuracy:0.9600
INFO:root:[Epoch 8 Batch 8700/12276] loss=0.1146, lr=0.0000024, metrics:accuracy:0.9601
INFO:root:[Epoch 8 Batch 8800/12276] loss=0.1161, lr=0.0000024, metrics:accuracy:0.9601
INFO:root:[Epoch 8 Batch 8900/12276] loss=0.1477, lr=0.0000024, metrics:accuracy:0.9599
INFO:root:[Epoch 8 Batch 9000/12276] loss=0.1396, lr=0.0000024, metrics:accuracy:0.9599
INFO:root:[Epoch 8 Batch 9100/12276] loss=0.1153, lr=0.0000024, metrics:accuracy:0.9599
INFO:root:[Epoch 8 Batch 9200/12276] loss=0.1089, lr=0.0000024, metrics:accuracy:0.9599
INFO:root:[Epoch 8 Batch 9300/12276] loss=0.1232, lr=0.0000024, metrics:accuracy:0.9599
INFO:root:[Epoch 8 Batch 9400/12276] loss=0.1071, lr=0.0000024, metrics:accuracy:0.9600
INFO:root:[Epoch 8 Batch 9500/12276] loss=0.1275, lr=0.0000024, metrics:accuracy:0.9600
INFO:root:[Epoch 8 Batch 9600/12276] loss=0.1123, lr=0.0000024, metrics:accuracy:0.9600
INFO:root:[Epoch 8 Batch 9700/12276] loss=0.1174, lr=0.0000023, metrics:accuracy:0.9600
INFO:root:[Epoch 8 Batch 9800/12276] loss=0.1321, lr=0.0000023, metrics:accuracy:0.9600
INFO:root:[Epoch 8 Batch 9900/12276] loss=0.1185, lr=0.0000023, metrics:accuracy:0.9600
INFO:root:[Epoch 8 Batch 10000/12276] loss=0.1301, lr=0.0000023, metrics:accuracy:0.9600
INFO:root:[Epoch 8 Batch 10100/12276] loss=0.1156, lr=0.0000023, metrics:accuracy:0.9601
INFO:root:[Epoch 8 Batch 10200/12276] loss=0.1468, lr=0.0000023, metrics:accuracy:0.9600
INFO:root:[Epoch 8 Batch 10300/12276] loss=0.1419, lr=0.0000023, metrics:accuracy:0.9599
INFO:root:[Epoch 8 Batch 10400/12276] loss=0.1503, lr=0.0000023, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 10500/12276] loss=0.1218, lr=0.0000023, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 10600/12276] loss=0.1229, lr=0.0000023, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 10700/12276] loss=0.1392, lr=0.0000023, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 10800/12276] loss=0.1181, lr=0.0000023, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 10900/12276] loss=0.1191, lr=0.0000022, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 11000/12276] loss=0.1290, lr=0.0000022, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 11100/12276] loss=0.1493, lr=0.0000022, metrics:accuracy:0.9597
INFO:root:[Epoch 8 Batch 11200/12276] loss=0.1163, lr=0.0000022, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 11300/12276] loss=0.1327, lr=0.0000022, metrics:accuracy:0.9597
INFO:root:[Epoch 8 Batch 11400/12276] loss=0.1200, lr=0.0000022, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 11500/12276] loss=0.1182, lr=0.0000022, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 11600/12276] loss=0.1301, lr=0.0000022, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 11700/12276] loss=0.1148, lr=0.0000022, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 11800/12276] loss=0.1178, lr=0.0000022, metrics:accuracy:0.9599
INFO:root:[Epoch 8 Batch 11900/12276] loss=0.1341, lr=0.0000022, metrics:accuracy:0.9598
INFO:root:[Epoch 8 Batch 12000/12276] loss=0.1253, lr=0.0000021, metrics:accuracy:0.9599
INFO:root:[Epoch 8 Batch 12100/12276] loss=0.1138, lr=0.0000021, metrics:accuracy:0.9599
INFO:root:[Epoch 8 Batch 12200/12276] loss=0.1158, lr=0.0000021, metrics:accuracy:0.9599
INFO:root:Now we are doing evaluation on dev_matched with gpu(1).
INFO:root:[Batch 100/1227] loss=0.5569, metrics:accuracy:0.8650
INFO:root:[Batch 200/1227] loss=0.5827, metrics:accuracy:0.8688
INFO:root:[Batch 300/1227] loss=0.5616, metrics:accuracy:0.8733
INFO:root:[Batch 400/1227] loss=0.5742, metrics:accuracy:0.8741
INFO:root:[Batch 500/1227] loss=0.5614, metrics:accuracy:0.8762
INFO:root:[Batch 600/1227] loss=0.5313, metrics:accuracy:0.8790
INFO:root:[Batch 700/1227] loss=0.6137, metrics:accuracy:0.8773
INFO:root:[Batch 800/1227] loss=0.5459, metrics:accuracy:0.8775
INFO:root:[Batch 900/1227] loss=0.5221, metrics:accuracy:0.8781
INFO:root:[Batch 1000/1227] loss=0.6559, metrics:accuracy:0.8755
INFO:root:[Batch 1100/1227] loss=0.6439, metrics:accuracy:0.8749
INFO:root:[Batch 1200/1227] loss=0.6058, metrics:accuracy:0.8749
INFO:root:validation metrics:accuracy:0.8757
INFO:root:Time cost=29.38s, throughput=334.09 samples/s
INFO:root:Now we are doing evaluation on dev_mismatched with gpu(1).
INFO:root:[Batch 100/1229] loss=0.6629, metrics:accuracy:0.8525
INFO:root:[Batch 200/1229] loss=0.5715, metrics:accuracy:0.8606
INFO:root:[Batch 300/1229] loss=0.5633, metrics:accuracy:0.8683
INFO:root:[Batch 400/1229] loss=0.5816, metrics:accuracy:0.8700
INFO:root:[Batch 500/1229] loss=0.5763, metrics:accuracy:0.8702
INFO:root:[Batch 600/1229] loss=0.5413, metrics:accuracy:0.8708
INFO:root:[Batch 700/1229] loss=0.6884, metrics:accuracy:0.8671
INFO:root:[Batch 800/1229] loss=0.5717, metrics:accuracy:0.8675
INFO:root:[Batch 900/1229] loss=0.5937, metrics:accuracy:0.8676
INFO:root:[Batch 1000/1229] loss=0.5902, metrics:accuracy:0.8666
INFO:root:[Batch 1100/1229] loss=0.6377, metrics:accuracy:0.8667
INFO:root:[Batch 1200/1229] loss=0.6533, metrics:accuracy:0.8659
INFO:root:validation metrics:accuracy:0.8662
INFO:root:Time cost=28.92s, throughput=339.95 samples/s
INFO:root:params saved in: ./output_dir/model_bert_MNLI_7.params
INFO:root:Time cost=1894.24s
INFO:root:[Epoch 9 Batch 100/12276] loss=0.1012, lr=0.0000021, metrics:accuracy:0.9653
INFO:root:[Epoch 9 Batch 200/12276] loss=0.1095, lr=0.0000021, metrics:accuracy:0.9653
INFO:root:[Epoch 9 Batch 300/12276] loss=0.1005, lr=0.0000021, metrics:accuracy:0.9652
INFO:root:[Epoch 9 Batch 400/12276] loss=0.0959, lr=0.0000021, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 500/12276] loss=0.1177, lr=0.0000021, metrics:accuracy:0.9659
INFO:root:[Epoch 9 Batch 600/12276] loss=0.1206, lr=0.0000021, metrics:accuracy:0.9653
INFO:root:[Epoch 9 Batch 700/12276] loss=0.1114, lr=0.0000021, metrics:accuracy:0.9648
INFO:root:[Epoch 9 Batch 800/12276] loss=0.1080, lr=0.0000021, metrics:accuracy:0.9654
INFO:root:[Epoch 9 Batch 900/12276] loss=0.0969, lr=0.0000020, metrics:accuracy:0.9661
INFO:root:[Epoch 9 Batch 1000/12276] loss=0.1179, lr=0.0000020, metrics:accuracy:0.9658
INFO:root:[Epoch 9 Batch 1100/12276] loss=0.1048, lr=0.0000020, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 1200/12276] loss=0.1050, lr=0.0000020, metrics:accuracy:0.9663
INFO:root:[Epoch 9 Batch 1300/12276] loss=0.1027, lr=0.0000020, metrics:accuracy:0.9665
INFO:root:[Epoch 9 Batch 1400/12276] loss=0.0926, lr=0.0000020, metrics:accuracy:0.9667
INFO:root:[Epoch 9 Batch 1500/12276] loss=0.1303, lr=0.0000020, metrics:accuracy:0.9665
INFO:root:[Epoch 9 Batch 1600/12276] loss=0.1305, lr=0.0000020, metrics:accuracy:0.9660
INFO:root:[Epoch 9 Batch 1700/12276] loss=0.0960, lr=0.0000020, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 1800/12276] loss=0.1057, lr=0.0000020, metrics:accuracy:0.9663
INFO:root:[Epoch 9 Batch 1900/12276] loss=0.1007, lr=0.0000020, metrics:accuracy:0.9666
INFO:root:[Epoch 9 Batch 2000/12276] loss=0.0953, lr=0.0000020, metrics:accuracy:0.9668
INFO:root:[Epoch 9 Batch 2100/12276] loss=0.0981, lr=0.0000019, metrics:accuracy:0.9669
INFO:root:[Epoch 9 Batch 2200/12276] loss=0.1135, lr=0.0000019, metrics:accuracy:0.9669
INFO:root:[Epoch 9 Batch 2300/12276] loss=0.1063, lr=0.0000019, metrics:accuracy:0.9670
INFO:root:[Epoch 9 Batch 2400/12276] loss=0.0822, lr=0.0000019, metrics:accuracy:0.9674
INFO:root:[Epoch 9 Batch 2500/12276] loss=0.1239, lr=0.0000019, metrics:accuracy:0.9672
INFO:root:[Epoch 9 Batch 2600/12276] loss=0.1074, lr=0.0000019, metrics:accuracy:0.9672
INFO:root:[Epoch 9 Batch 2700/12276] loss=0.1208, lr=0.0000019, metrics:accuracy:0.9670
INFO:root:[Epoch 9 Batch 2800/12276] loss=0.1194, lr=0.0000019, metrics:accuracy:0.9670
INFO:root:[Epoch 9 Batch 2900/12276] loss=0.1226, lr=0.0000019, metrics:accuracy:0.9668
INFO:root:[Epoch 9 Batch 3000/12276] loss=0.1145, lr=0.0000019, metrics:accuracy:0.9668
INFO:root:[Epoch 9 Batch 3100/12276] loss=0.1076, lr=0.0000019, metrics:accuracy:0.9668
INFO:root:[Epoch 9 Batch 3200/12276] loss=0.1011, lr=0.0000018, metrics:accuracy:0.9669
INFO:root:[Epoch 9 Batch 3300/12276] loss=0.1121, lr=0.0000018, metrics:accuracy:0.9669
INFO:root:[Epoch 9 Batch 3400/12276] loss=0.1133, lr=0.0000018, metrics:accuracy:0.9668
INFO:root:[Epoch 9 Batch 3500/12276] loss=0.1165, lr=0.0000018, metrics:accuracy:0.9667
INFO:root:[Epoch 9 Batch 3600/12276] loss=0.1096, lr=0.0000018, metrics:accuracy:0.9666
INFO:root:[Epoch 9 Batch 3700/12276] loss=0.0947, lr=0.0000018, metrics:accuracy:0.9667
INFO:root:[Epoch 9 Batch 3800/12276] loss=0.1183, lr=0.0000018, metrics:accuracy:0.9666
INFO:root:[Epoch 9 Batch 3900/12276] loss=0.1061, lr=0.0000018, metrics:accuracy:0.9666
INFO:root:[Epoch 9 Batch 4000/12276] loss=0.1273, lr=0.0000018, metrics:accuracy:0.9665
INFO:root:[Epoch 9 Batch 4100/12276] loss=0.1265, lr=0.0000018, metrics:accuracy:0.9664
INFO:root:[Epoch 9 Batch 4200/12276] loss=0.1197, lr=0.0000018, metrics:accuracy:0.9664
INFO:root:[Epoch 9 Batch 4300/12276] loss=0.1056, lr=0.0000018, metrics:accuracy:0.9663
INFO:root:[Epoch 9 Batch 4400/12276] loss=0.1112, lr=0.0000017, metrics:accuracy:0.9663
INFO:root:[Epoch 9 Batch 4500/12276] loss=0.1034, lr=0.0000017, metrics:accuracy:0.9663
INFO:root:[Epoch 9 Batch 4600/12276] loss=0.1058, lr=0.0000017, metrics:accuracy:0.9663
INFO:root:[Epoch 9 Batch 4700/12276] loss=0.1257, lr=0.0000017, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 4800/12276] loss=0.1273, lr=0.0000017, metrics:accuracy:0.9661
INFO:root:[Epoch 9 Batch 4900/12276] loss=0.0983, lr=0.0000017, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 5000/12276] loss=0.1081, lr=0.0000017, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 5100/12276] loss=0.1383, lr=0.0000017, metrics:accuracy:0.9661
INFO:root:[Epoch 9 Batch 5200/12276] loss=0.1030, lr=0.0000017, metrics:accuracy:0.9661
INFO:root:[Epoch 9 Batch 5300/12276] loss=0.1039, lr=0.0000017, metrics:accuracy:0.9661
INFO:root:[Epoch 9 Batch 5400/12276] loss=0.1197, lr=0.0000017, metrics:accuracy:0.9660
INFO:root:[Epoch 9 Batch 5500/12276] loss=0.1089, lr=0.0000016, metrics:accuracy:0.9660
INFO:root:[Epoch 9 Batch 5600/12276] loss=0.1118, lr=0.0000016, metrics:accuracy:0.9660
INFO:root:[Epoch 9 Batch 5700/12276] loss=0.1158, lr=0.0000016, metrics:accuracy:0.9660
INFO:root:[Epoch 9 Batch 5800/12276] loss=0.1030, lr=0.0000016, metrics:accuracy:0.9661
INFO:root:[Epoch 9 Batch 5900/12276] loss=0.0933, lr=0.0000016, metrics:accuracy:0.9661
INFO:root:[Epoch 9 Batch 6000/12276] loss=0.1032, lr=0.0000016, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 6100/12276] loss=0.1239, lr=0.0000016, metrics:accuracy:0.9661
INFO:root:[Epoch 9 Batch 6200/12276] loss=0.1254, lr=0.0000016, metrics:accuracy:0.9661
INFO:root:[Epoch 9 Batch 6300/12276] loss=0.1014, lr=0.0000016, metrics:accuracy:0.9661
INFO:root:[Epoch 9 Batch 6400/12276] loss=0.1176, lr=0.0000016, metrics:accuracy:0.9661
INFO:root:[Epoch 9 Batch 6500/12276] loss=0.1010, lr=0.0000016, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 6600/12276] loss=0.1228, lr=0.0000016, metrics:accuracy:0.9661
INFO:root:[Epoch 9 Batch 6700/12276] loss=0.0852, lr=0.0000015, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 6800/12276] loss=0.1002, lr=0.0000015, metrics:accuracy:0.9663
INFO:root:[Epoch 9 Batch 6900/12276] loss=0.1136, lr=0.0000015, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 7000/12276] loss=0.0937, lr=0.0000015, metrics:accuracy:0.9663
INFO:root:[Epoch 9 Batch 7100/12276] loss=0.1235, lr=0.0000015, metrics:accuracy:0.9663
INFO:root:[Epoch 9 Batch 7200/12276] loss=0.1044, lr=0.0000015, metrics:accuracy:0.9663
INFO:root:[Epoch 9 Batch 7300/12276] loss=0.0912, lr=0.0000015, metrics:accuracy:0.9663
INFO:root:[Epoch 9 Batch 7400/12276] loss=0.1114, lr=0.0000015, metrics:accuracy:0.9663
INFO:root:[Epoch 9 Batch 7500/12276] loss=0.1192, lr=0.0000015, metrics:accuracy:0.9663
INFO:root:[Epoch 9 Batch 7600/12276] loss=0.1045, lr=0.0000015, metrics:accuracy:0.9663
INFO:root:[Epoch 9 Batch 7700/12276] loss=0.1210, lr=0.0000015, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 7800/12276] loss=0.0879, lr=0.0000014, metrics:accuracy:0.9663
INFO:root:[Epoch 9 Batch 7900/12276] loss=0.1163, lr=0.0000014, metrics:accuracy:0.9663
INFO:root:[Epoch 9 Batch 8000/12276] loss=0.1038, lr=0.0000014, metrics:accuracy:0.9664
INFO:root:[Epoch 9 Batch 8100/12276] loss=0.1170, lr=0.0000014, metrics:accuracy:0.9664
INFO:root:[Epoch 9 Batch 8200/12276] loss=0.1156, lr=0.0000014, metrics:accuracy:0.9663
INFO:root:[Epoch 9 Batch 8300/12276] loss=0.1103, lr=0.0000014, metrics:accuracy:0.9663
INFO:root:[Epoch 9 Batch 8400/12276] loss=0.1305, lr=0.0000014, metrics:accuracy:0.9663
INFO:root:[Epoch 9 Batch 8500/12276] loss=0.1002, lr=0.0000014, metrics:accuracy:0.9663
INFO:root:[Epoch 9 Batch 8600/12276] loss=0.1278, lr=0.0000014, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 8700/12276] loss=0.1149, lr=0.0000014, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 8800/12276] loss=0.1162, lr=0.0000014, metrics:accuracy:0.9661
INFO:root:[Epoch 9 Batch 8900/12276] loss=0.1152, lr=0.0000014, metrics:accuracy:0.9661
INFO:root:[Epoch 9 Batch 9000/12276] loss=0.1212, lr=0.0000013, metrics:accuracy:0.9661
INFO:root:[Epoch 9 Batch 9100/12276] loss=0.1046, lr=0.0000013, metrics:accuracy:0.9661
INFO:root:[Epoch 9 Batch 9200/12276] loss=0.1123, lr=0.0000013, metrics:accuracy:0.9661
INFO:root:[Epoch 9 Batch 9300/12276] loss=0.0908, lr=0.0000013, metrics:accuracy:0.9661
INFO:root:[Epoch 9 Batch 9400/12276] loss=0.1086, lr=0.0000013, metrics:accuracy:0.9661
INFO:root:[Epoch 9 Batch 9500/12276] loss=0.1277, lr=0.0000013, metrics:accuracy:0.9661
INFO:root:[Epoch 9 Batch 9600/12276] loss=0.1247, lr=0.0000013, metrics:accuracy:0.9661
INFO:root:[Epoch 9 Batch 9700/12276] loss=0.1034, lr=0.0000013, metrics:accuracy:0.9661
INFO:root:[Epoch 9 Batch 9800/12276] loss=0.1141, lr=0.0000013, metrics:accuracy:0.9661
INFO:root:[Epoch 9 Batch 9900/12276] loss=0.1001, lr=0.0000013, metrics:accuracy:0.9661
INFO:root:[Epoch 9 Batch 10000/12276] loss=0.0908, lr=0.0000013, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 10100/12276] loss=0.1083, lr=0.0000012, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 10200/12276] loss=0.0943, lr=0.0000012, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 10300/12276] loss=0.1113, lr=0.0000012, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 10400/12276] loss=0.1004, lr=0.0000012, metrics:accuracy:0.9663
INFO:root:[Epoch 9 Batch 10500/12276] loss=0.1106, lr=0.0000012, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 10600/12276] loss=0.1353, lr=0.0000012, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 10700/12276] loss=0.1015, lr=0.0000012, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 10800/12276] loss=0.1460, lr=0.0000012, metrics:accuracy:0.9661
INFO:root:[Epoch 9 Batch 10900/12276] loss=0.0999, lr=0.0000012, metrics:accuracy:0.9661
INFO:root:[Epoch 9 Batch 11000/12276] loss=0.0952, lr=0.0000012, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 11100/12276] loss=0.1029, lr=0.0000012, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 11200/12276] loss=0.1217, lr=0.0000012, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 11300/12276] loss=0.1199, lr=0.0000011, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 11400/12276] loss=0.1036, lr=0.0000011, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 11500/12276] loss=0.1201, lr=0.0000011, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 11600/12276] loss=0.1107, lr=0.0000011, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 11700/12276] loss=0.1047, lr=0.0000011, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 11800/12276] loss=0.1327, lr=0.0000011, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 11900/12276] loss=0.0999, lr=0.0000011, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 12000/12276] loss=0.1171, lr=0.0000011, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 12100/12276] loss=0.1217, lr=0.0000011, metrics:accuracy:0.9662
INFO:root:[Epoch 9 Batch 12200/12276] loss=0.1343, lr=0.0000011, metrics:accuracy:0.9661
INFO:root:Now we are doing evaluation on dev_matched with gpu(1).
INFO:root:[Batch 100/1227] loss=0.5993, metrics:accuracy:0.8625
INFO:root:[Batch 200/1227] loss=0.6138, metrics:accuracy:0.8675
INFO:root:[Batch 300/1227] loss=0.5927, metrics:accuracy:0.8700
INFO:root:[Batch 400/1227] loss=0.6076, metrics:accuracy:0.8700
INFO:root:[Batch 500/1227] loss=0.5822, metrics:accuracy:0.8725
INFO:root:[Batch 600/1227] loss=0.5412, metrics:accuracy:0.8752
INFO:root:[Batch 700/1227] loss=0.6240, metrics:accuracy:0.8754
INFO:root:[Batch 800/1227] loss=0.5658, metrics:accuracy:0.8766
INFO:root:[Batch 900/1227] loss=0.5600, metrics:accuracy:0.8768
INFO:root:[Batch 1000/1227] loss=0.6745, metrics:accuracy:0.8758
INFO:root:[Batch 1100/1227] loss=0.6793, metrics:accuracy:0.8749
INFO:root:[Batch 1200/1227] loss=0.6424, metrics:accuracy:0.8743
INFO:root:validation metrics:accuracy:0.8751
INFO:root:Time cost=28.64s, throughput=342.78 samples/s
INFO:root:Now we are doing evaluation on dev_mismatched with gpu(1).
INFO:root:[Batch 100/1229] loss=0.6897, metrics:accuracy:0.8625
INFO:root:[Batch 200/1229] loss=0.5800, metrics:accuracy:0.8675
INFO:root:[Batch 300/1229] loss=0.5972, metrics:accuracy:0.8688
INFO:root:[Batch 400/1229] loss=0.6260, metrics:accuracy:0.8694
INFO:root:[Batch 500/1229] loss=0.6019, metrics:accuracy:0.8700
INFO:root:[Batch 600/1229] loss=0.5744, metrics:accuracy:0.8706
INFO:root:[Batch 700/1229] loss=0.7257, metrics:accuracy:0.8675
INFO:root:[Batch 800/1229] loss=0.5691, metrics:accuracy:0.8684
INFO:root:[Batch 900/1229] loss=0.6339, metrics:accuracy:0.8685
INFO:root:[Batch 1000/1229] loss=0.6433, metrics:accuracy:0.8666
INFO:root:[Batch 1100/1229] loss=0.6769, metrics:accuracy:0.8661
INFO:root:[Batch 1200/1229] loss=0.6918, metrics:accuracy:0.8650
INFO:root:validation metrics:accuracy:0.8652
INFO:root:Time cost=28.43s, throughput=345.82 samples/s
INFO:root:params saved in: ./output_dir/model_bert_MNLI_8.params
INFO:root:Time cost=1895.04s
INFO:root:[Epoch 10 Batch 100/12276] loss=0.0854, lr=0.0000011, metrics:accuracy:0.9719
INFO:root:[Epoch 10 Batch 200/12276] loss=0.0991, lr=0.0000010, metrics:accuracy:0.9716
INFO:root:[Epoch 10 Batch 300/12276] loss=0.1302, lr=0.0000010, metrics:accuracy:0.9673
INFO:root:[Epoch 10 Batch 400/12276] loss=0.0898, lr=0.0000010, metrics:accuracy:0.9684
INFO:root:[Epoch 10 Batch 500/12276] loss=0.1044, lr=0.0000010, metrics:accuracy:0.9683
INFO:root:[Epoch 10 Batch 600/12276] loss=0.0954, lr=0.0000010, metrics:accuracy:0.9686
INFO:root:[Epoch 10 Batch 700/12276] loss=0.0743, lr=0.0000010, metrics:accuracy:0.9697
INFO:root:[Epoch 10 Batch 800/12276] loss=0.1063, lr=0.0000010, metrics:accuracy:0.9694
INFO:root:[Epoch 10 Batch 900/12276] loss=0.1062, lr=0.0000010, metrics:accuracy:0.9692
INFO:root:[Epoch 10 Batch 1000/12276] loss=0.0926, lr=0.0000010, metrics:accuracy:0.9695
INFO:root:[Epoch 10 Batch 1100/12276] loss=0.0994, lr=0.0000010, metrics:accuracy:0.9694
INFO:root:[Epoch 10 Batch 1200/12276] loss=0.0988, lr=0.0000010, metrics:accuracy:0.9695
INFO:root:[Epoch 10 Batch 1300/12276] loss=0.1170, lr=0.0000009, metrics:accuracy:0.9691
INFO:root:[Epoch 10 Batch 1400/12276] loss=0.0992, lr=0.0000009, metrics:accuracy:0.9691
INFO:root:[Epoch 10 Batch 1500/12276] loss=0.0963, lr=0.0000009, metrics:accuracy:0.9693
INFO:root:[Epoch 10 Batch 1600/12276] loss=0.0979, lr=0.0000009, metrics:accuracy:0.9695
INFO:root:[Epoch 10 Batch 1700/12276] loss=0.0983, lr=0.0000009, metrics:accuracy:0.9695
INFO:root:[Epoch 10 Batch 1800/12276] loss=0.0918, lr=0.0000009, metrics:accuracy:0.9697
INFO:root:[Epoch 10 Batch 1900/12276] loss=0.0930, lr=0.0000009, metrics:accuracy:0.9698
INFO:root:[Epoch 10 Batch 2000/12276] loss=0.1099, lr=0.0000009, metrics:accuracy:0.9697
INFO:root:[Epoch 10 Batch 2100/12276] loss=0.1007, lr=0.0000009, metrics:accuracy:0.9697
INFO:root:[Epoch 10 Batch 2200/12276] loss=0.0989, lr=0.0000009, metrics:accuracy:0.9696
INFO:root:[Epoch 10 Batch 2300/12276] loss=0.0929, lr=0.0000009, metrics:accuracy:0.9697
INFO:root:[Epoch 10 Batch 2400/12276] loss=0.1055, lr=0.0000009, metrics:accuracy:0.9697
INFO:root:[Epoch 10 Batch 2500/12276] loss=0.0980, lr=0.0000008, metrics:accuracy:0.9697
INFO:root:[Epoch 10 Batch 2600/12276] loss=0.0884, lr=0.0000008, metrics:accuracy:0.9698
INFO:root:[Epoch 10 Batch 2700/12276] loss=0.1034, lr=0.0000008, metrics:accuracy:0.9698
INFO:root:[Epoch 10 Batch 2800/12276] loss=0.0890, lr=0.0000008, metrics:accuracy:0.9700
INFO:root:[Epoch 10 Batch 2900/12276] loss=0.0959, lr=0.0000008, metrics:accuracy:0.9700
INFO:root:[Epoch 10 Batch 3000/12276] loss=0.0951, lr=0.0000008, metrics:accuracy:0.9700
INFO:root:[Epoch 10 Batch 3100/12276] loss=0.0784, lr=0.0000008, metrics:accuracy:0.9702
INFO:root:[Epoch 10 Batch 3200/12276] loss=0.1006, lr=0.0000008, metrics:accuracy:0.9702
INFO:root:[Epoch 10 Batch 3300/12276] loss=0.0989, lr=0.0000008, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 3400/12276] loss=0.1129, lr=0.0000008, metrics:accuracy:0.9702
INFO:root:[Epoch 10 Batch 3500/12276] loss=0.1114, lr=0.0000008, metrics:accuracy:0.9701
INFO:root:[Epoch 10 Batch 3600/12276] loss=0.1121, lr=0.0000007, metrics:accuracy:0.9700
INFO:root:[Epoch 10 Batch 3700/12276] loss=0.0884, lr=0.0000007, metrics:accuracy:0.9700
INFO:root:[Epoch 10 Batch 3800/12276] loss=0.1064, lr=0.0000007, metrics:accuracy:0.9700
INFO:root:[Epoch 10 Batch 3900/12276] loss=0.0895, lr=0.0000007, metrics:accuracy:0.9701
INFO:root:[Epoch 10 Batch 4000/12276] loss=0.0939, lr=0.0000007, metrics:accuracy:0.9702
INFO:root:[Epoch 10 Batch 4100/12276] loss=0.1143, lr=0.0000007, metrics:accuracy:0.9701
INFO:root:[Epoch 10 Batch 4200/12276] loss=0.0887, lr=0.0000007, metrics:accuracy:0.9702
INFO:root:[Epoch 10 Batch 4300/12276] loss=0.1001, lr=0.0000007, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 4400/12276] loss=0.0922, lr=0.0000007, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 4500/12276] loss=0.1152, lr=0.0000007, metrics:accuracy:0.9702
INFO:root:[Epoch 10 Batch 4600/12276] loss=0.0885, lr=0.0000007, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 4700/12276] loss=0.1033, lr=0.0000007, metrics:accuracy:0.9702
INFO:root:[Epoch 10 Batch 4800/12276] loss=0.0963, lr=0.0000006, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 4900/12276] loss=0.1091, lr=0.0000006, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 5000/12276] loss=0.1180, lr=0.0000006, metrics:accuracy:0.9701
INFO:root:[Epoch 10 Batch 5100/12276] loss=0.0991, lr=0.0000006, metrics:accuracy:0.9702
INFO:root:[Epoch 10 Batch 5200/12276] loss=0.0934, lr=0.0000006, metrics:accuracy:0.9702
INFO:root:[Epoch 10 Batch 5300/12276] loss=0.1145, lr=0.0000006, metrics:accuracy:0.9702
INFO:root:[Epoch 10 Batch 5400/12276] loss=0.1039, lr=0.0000006, metrics:accuracy:0.9702
INFO:root:[Epoch 10 Batch 5500/12276] loss=0.0845, lr=0.0000006, metrics:accuracy:0.9702
INFO:root:[Epoch 10 Batch 5600/12276] loss=0.1019, lr=0.0000006, metrics:accuracy:0.9702
INFO:root:[Epoch 10 Batch 5700/12276] loss=0.0837, lr=0.0000006, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 5800/12276] loss=0.1040, lr=0.0000006, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 5900/12276] loss=0.0993, lr=0.0000005, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 6000/12276] loss=0.1022, lr=0.0000005, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 6100/12276] loss=0.0990, lr=0.0000005, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 6200/12276] loss=0.0955, lr=0.0000005, metrics:accuracy:0.9704
INFO:root:[Epoch 10 Batch 6300/12276] loss=0.1325, lr=0.0000005, metrics:accuracy:0.9702
INFO:root:[Epoch 10 Batch 6400/12276] loss=0.1048, lr=0.0000005, metrics:accuracy:0.9702
INFO:root:[Epoch 10 Batch 6500/12276] loss=0.0780, lr=0.0000005, metrics:accuracy:0.9702
INFO:root:[Epoch 10 Batch 6600/12276] loss=0.0946, lr=0.0000005, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 6700/12276] loss=0.1000, lr=0.0000005, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 6800/12276] loss=0.1071, lr=0.0000005, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 6900/12276] loss=0.1085, lr=0.0000005, metrics:accuracy:0.9702
INFO:root:[Epoch 10 Batch 7000/12276] loss=0.0916, lr=0.0000005, metrics:accuracy:0.9702
INFO:root:[Epoch 10 Batch 7100/12276] loss=0.1043, lr=0.0000004, metrics:accuracy:0.9702
INFO:root:[Epoch 10 Batch 7200/12276] loss=0.1142, lr=0.0000004, metrics:accuracy:0.9702
INFO:root:[Epoch 10 Batch 7300/12276] loss=0.1163, lr=0.0000004, metrics:accuracy:0.9701
INFO:root:[Epoch 10 Batch 7400/12276] loss=0.0894, lr=0.0000004, metrics:accuracy:0.9702
INFO:root:[Epoch 10 Batch 7500/12276] loss=0.1017, lr=0.0000004, metrics:accuracy:0.9702
INFO:root:[Epoch 10 Batch 7600/12276] loss=0.0939, lr=0.0000004, metrics:accuracy:0.9702
INFO:root:[Epoch 10 Batch 7700/12276] loss=0.1203, lr=0.0000004, metrics:accuracy:0.9701
INFO:root:[Epoch 10 Batch 7800/12276] loss=0.1074, lr=0.0000004, metrics:accuracy:0.9701
INFO:root:[Epoch 10 Batch 7900/12276] loss=0.0969, lr=0.0000004, metrics:accuracy:0.9701
INFO:root:[Epoch 10 Batch 8000/12276] loss=0.1064, lr=0.0000004, metrics:accuracy:0.9700
INFO:root:[Epoch 10 Batch 8100/12276] loss=0.1024, lr=0.0000004, metrics:accuracy:0.9700
INFO:root:[Epoch 10 Batch 8200/12276] loss=0.1196, lr=0.0000003, metrics:accuracy:0.9699
INFO:root:[Epoch 10 Batch 8300/12276] loss=0.0963, lr=0.0000003, metrics:accuracy:0.9700
INFO:root:[Epoch 10 Batch 8400/12276] loss=0.0872, lr=0.0000003, metrics:accuracy:0.9700
INFO:root:[Epoch 10 Batch 8500/12276] loss=0.0965, lr=0.0000003, metrics:accuracy:0.9701
INFO:root:[Epoch 10 Batch 8600/12276] loss=0.1009, lr=0.0000003, metrics:accuracy:0.9701
INFO:root:[Epoch 10 Batch 8700/12276] loss=0.0912, lr=0.0000003, metrics:accuracy:0.9701
INFO:root:[Epoch 10 Batch 8800/12276] loss=0.0797, lr=0.0000003, metrics:accuracy:0.9702
INFO:root:[Epoch 10 Batch 8900/12276] loss=0.0950, lr=0.0000003, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 9000/12276] loss=0.0948, lr=0.0000003, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 9100/12276] loss=0.0895, lr=0.0000003, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 9200/12276] loss=0.0952, lr=0.0000003, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 9300/12276] loss=0.0804, lr=0.0000003, metrics:accuracy:0.9704
INFO:root:[Epoch 10 Batch 9400/12276] loss=0.1056, lr=0.0000002, metrics:accuracy:0.9704
INFO:root:[Epoch 10 Batch 9500/12276] loss=0.1119, lr=0.0000002, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 9600/12276] loss=0.1068, lr=0.0000002, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 9700/12276] loss=0.0938, lr=0.0000002, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 9800/12276] loss=0.0909, lr=0.0000002, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 9900/12276] loss=0.1042, lr=0.0000002, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 10000/12276] loss=0.1108, lr=0.0000002, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 10100/12276] loss=0.0943, lr=0.0000002, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 10200/12276] loss=0.1033, lr=0.0000002, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 10300/12276] loss=0.1008, lr=0.0000002, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 10400/12276] loss=0.1130, lr=0.0000002, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 10500/12276] loss=0.0946, lr=0.0000002, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 10600/12276] loss=0.0983, lr=0.0000001, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 10700/12276] loss=0.1038, lr=0.0000001, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 10800/12276] loss=0.0965, lr=0.0000001, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 10900/12276] loss=0.0884, lr=0.0000001, metrics:accuracy:0.9704
INFO:root:[Epoch 10 Batch 11000/12276] loss=0.0899, lr=0.0000001, metrics:accuracy:0.9704
INFO:root:[Epoch 10 Batch 11100/12276] loss=0.1061, lr=0.0000001, metrics:accuracy:0.9704
INFO:root:[Epoch 10 Batch 11200/12276] loss=0.1171, lr=0.0000001, metrics:accuracy:0.9703
INFO:root:[Epoch 10 Batch 11300/12276] loss=0.0840, lr=0.0000001, metrics:accuracy:0.9704
INFO:root:[Epoch 10 Batch 11400/12276] loss=0.1044, lr=0.0000001, metrics:accuracy:0.9704
INFO:root:[Epoch 10 Batch 11500/12276] loss=0.0910, lr=0.0000001, metrics:accuracy:0.9704
INFO:root:[Epoch 10 Batch 11600/12276] loss=0.0959, lr=0.0000001, metrics:accuracy:0.9704
INFO:root:[Epoch 10 Batch 11700/12276] loss=0.1054, lr=0.0000000, metrics:accuracy:0.9704
INFO:root:[Epoch 10 Batch 11800/12276] loss=0.1111, lr=0.0000000, metrics:accuracy:0.9704
INFO:root:[Epoch 10 Batch 11900/12276] loss=0.0951, lr=0.0000000, metrics:accuracy:0.9704
INFO:root:[Epoch 10 Batch 12000/12276] loss=0.0968, lr=0.0000000, metrics:accuracy:0.9704
INFO:root:[Epoch 10 Batch 12100/12276] loss=0.0729, lr=0.0000000, metrics:accuracy:0.9704
INFO:root:[Epoch 10 Batch 12200/12276] loss=0.0963, lr=0.0000000, metrics:accuracy:0.9705
INFO:root:Now we are doing evaluation on dev_matched with gpu(1).
INFO:root:[Batch 100/1227] loss=0.6822, metrics:accuracy:0.8638
INFO:root:[Batch 200/1227] loss=0.6829, metrics:accuracy:0.8681
INFO:root:[Batch 300/1227] loss=0.6636, metrics:accuracy:0.8712
INFO:root:[Batch 400/1227] loss=0.6724, metrics:accuracy:0.8722
INFO:root:[Batch 500/1227] loss=0.6547, metrics:accuracy:0.8742
INFO:root:[Batch 600/1227] loss=0.6124, metrics:accuracy:0.8771
INFO:root:[Batch 700/1227] loss=0.6982, metrics:accuracy:0.8766
INFO:root:[Batch 800/1227] loss=0.6436, metrics:accuracy:0.8769
INFO:root:[Batch 900/1227] loss=0.6147, metrics:accuracy:0.8768
INFO:root:[Batch 1000/1227] loss=0.7603, metrics:accuracy:0.8749
INFO:root:[Batch 1100/1227] loss=0.7552, metrics:accuracy:0.8741
INFO:root:[Batch 1200/1227] loss=0.7209, metrics:accuracy:0.8736
INFO:root:validation metrics:accuracy:0.8745
INFO:root:Time cost=27.98s, throughput=350.83 samples/s
INFO:root:Now we are doing evaluation on dev_mismatched with gpu(1).
INFO:root:[Batch 100/1229] loss=0.7753, metrics:accuracy:0.8562
INFO:root:[Batch 200/1229] loss=0.6574, metrics:accuracy:0.8656
INFO:root:[Batch 300/1229] loss=0.6595, metrics:accuracy:0.8675
INFO:root:[Batch 400/1229] loss=0.6876, metrics:accuracy:0.8697
INFO:root:[Batch 500/1229] loss=0.6684, metrics:accuracy:0.8710
INFO:root:[Batch 600/1229] loss=0.6331, metrics:accuracy:0.8723
INFO:root:[Batch 700/1229] loss=0.8087, metrics:accuracy:0.8686
INFO:root:[Batch 800/1229] loss=0.6336, metrics:accuracy:0.8694
INFO:root:[Batch 900/1229] loss=0.7072, metrics:accuracy:0.8696
INFO:root:[Batch 1000/1229] loss=0.7119, metrics:accuracy:0.8682
INFO:root:[Batch 1100/1229] loss=0.7469, metrics:accuracy:0.8680
INFO:root:[Batch 1200/1229] loss=0.7757, metrics:accuracy:0.8665
INFO:root:validation metrics:accuracy:0.8667
INFO:root:Time cost=29.61s, throughput=332.04 samples/s
INFO:root:params saved in: ./output_dir/model_bert_MNLI_9.params
INFO:root:Time cost=1921.48s
INFO:root:Best model at epoch 3. Validation metrics:accuracy:0.8769
INFO:root:Now we are doing testing on test_matched with gpu(1).
INFO:root:Time cost=25.13s, throughput=390.03 samples/s
INFO:root:Now we are doing testing on test_mismatched with gpu(1).
INFO:root:Time cost=28.69s, throughput=343.30 samples/s