Skip to content

Latest commit

 

History

History
231 lines (164 loc) · 14.1 KB

coexist.rst

File metadata and controls

231 lines (164 loc) · 14.1 KB

RF 共存

:link_to_translation:en:[English]

概览

{IDF_TARGET_NAME} 只支持一路 RF,Bluetooth (BT 和 BLE)和 Wi-Fi 共享这一路 RF,无法同时收发数据,因此采用时分复用的方法进行收发数据包。

{IDF_TARGET_NAME} 支持的共存场景

SOC_WIFI_SUPPORTED and SOC_BLE_SUPPORTED

esp32

Note

Y:支持且性能稳定。 C1:不能保证性能处于稳定状态。 X:不支持。 S:在STA模式下支持且性能稳定,否则不支持。

共存机制与策略

共存机制

基于优先级抢占的 RF 资源分配机制,如下图所示,Bluetooth 模块和 Wi-Fi 模块向共存模块申请 RF 资源,共存模块根据二者的优先级高低裁决 RF 归谁使用。

blockdiag {

# global attributes node_height = 60; node_width = 120; span_width = 100; span_height = 60; default_shape = roundedbox; default_group_color = none;

# node labels Wi-Fi [shape = box]; Bluetooth [shape = box]; Coexistence [shape = box, label = 'Coexistence module']; RF [shape = box, label = 'RF module'];

# node connections Wi-Fi -> Coexistence; Bluetooth -> Coexistence; Coexistence -> RF;

}

共存策略

共存周期和时间片

esp32

Wi-Fi、BT、BLE 三者对于 RF 的使用,主要是按照时间片来划分的。在一个共存周期内,按照 Wi-Fi、BT、BLE 的顺序划分时间片。在 Wi-Fi 的时间片内,Wi-Fi 会向共存仲裁模块发出较高优先级的请求,同理,BT/BLE 在自己的时间片内会具有较高优先级。共存周期大小和各个时间片占比根据 Wi-Fi 的状态分成四类:

SOC_WIFI_SUPPORTED and SOC_BLE_SUPPORTED and not esp32

Wi-Fi、BLE 二者对于 RF 的使用,主要是按照时间片来划分的。在 Wi-Fi 的时间片内,Wi-Fi 会向共存仲裁模块发出较高优先级的请求,在 Bluetooth 的时间片内,BLE 会具有较高优先级。共存周期大小和各个时间片占比根据 Wi-Fi 的状态分成四类:

esp32
  1. IDLE 状态:BT 和 BLE 共存由 Bluetooth 模块控制。
SOC_WIFI_SUPPORTED and SOC_BLE_SUPPORTED and not esp32
  1. IDLE 状态:RF 模块由 Bluetooth 模块控制。
  1. CONNECTED 状态:共存周期以目标信标传输时间 (Target Beacon Transmission Time, TBTT) 点为起始点,周期大于 100 ms。
  2. SCAN 状态:Wi-Fi 时间片以及共存周期都比在 CONNECTED 状态下的长。为了确保蓝牙的性能,蓝牙的时间片也会做相应的调整。
  3. CONNECTING 状态:Wi-Fi 时间片比在 CONNECTED 状态下的长。为了确保蓝牙的性能,蓝牙的时间片也会做相应的调整。

共存逻辑会根据当前 Wi-Fi 和 Bluetooth 的使用场景来选取不同的共存周期和共存时间片的划分策略。对应一个使用场景的共存策略,我们称之为“共存模板”。比如,Wi-Fi CONNECTED 与 BLE CONNECTED 的场景,就对应有一个共存模板。在这个共存模板中,一个共存周期内 Wi-Fi 和 BLE 的时间片各占 50%,时间分配如下图所示:

Wi-Fi CONNECTED 和 BLE CONNECTED 共存状态下时间片划分图

Wi-Fi CONNECTED 和 BLE CONNECTED 共存状态下时间片划分图

动态优先级

共存模块对 Wi-Fi 和 Bluetooth 不同的状态赋予其不同的优先级。每种状态下的优先级并不是一成不变的,例如每 N 个广播事件 (Advertising event) 中会有一个广播事件使用高优先级。如果高优先级的广播事件发生在 Wi-Fi 时间片内,RF 的使用权可能会被 BLE 抢占。

SOC_WIFI_SUPPORTED

Wi-Fi 非连接模块的共存

在一定程度上,某些 Wi-Fi 非连接模块功耗参数 Window 与 Interval 的组合会导致共存模块在 Wi-Fi 时间片外申请共存优先级。这是为了按设定的功耗参数在共存时获取 RF 资源,但这会影响既定的蓝牙性能。

如果 Wi-Fi 非连接模块功耗参数为默认值时,上述动作不会发生,共存模块会按照性能稳定的模式运行。因此,除非您对特定非连接功耗参数下的共存性能有足够的测试,请在共存场景下将 Wi-Fi 非连接模块功耗参数配置为默认参数。

请参考 非连接模块功耗管理 <connectionless-module-power-save-cn> 获取更多信息。

如何使用共存功能

共存 API 的使用

在大多数共存情况下,{IDF_TARGET_NAME} 会自动进行共存状态切换,无需调用 API 对其进行干预。但是对于 BLE MESH 和 Wi-Fi 的共存,{IDF_TARGET_NAME} 对其提供了两个 API。当 BLE MESH 的状态发生变化时,应先调用 esp_coex_status_bit_clear 对上一个状态进行清除,然后调用 esp_coex_status_bit_set 设置当前状态。

BLE MESH 共存状态描述

由于 Wi-Fi 和 Bluetooth 固件无法获知当前的上层应用的场景,一些共存模板需要应用代码调用共存的 API 才能生效。BLE MESH 的工作状态就需要由应用层通知给共存模块,用于选择共存模板。

  • ESP_COEX_BLE_ST_MESH_CONFIG:正在组网。
  • ESP_COEX_BLE_ST_MESH_TRAFFIC:正在传输数据。
  • ESP_COEX_BLE_ST_MESH_STANDBY:处于空闲状态,无大量数据交互。

共存 API 错误代码

所有共存 API 都有自定义的返回值,即错误代码。这些代码可分类为:

  • 无错误,例如:返回值为 ESP_OK 代表 API 成功返回。
  • 可恢复错误,例如: 返回值为 ESP_ERR_INVALID_ARG 代表 API 参数错误。

设置共存编译时选项

- 在完成共存程序编写的时候,您必须通过 menuconfig 选择 CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE 打开软件共存配置选项,否则就无法使用上文中提到的共存功能。 :esp32: - 为了在共存情况下获得更好的 Wi-Fi 和蓝牙的通信性能,建议将 Wi-Fi 协议栈的 task 和蓝牙 Controller 以及 Host 协议栈的 task 运行在不同的 CPU 上。您可以通过 CONFIG_BTDM_CTRL_PINNED_TO_CORE_CHOICECONFIG_BT_BLUEDROID_PINNED_TO_CORE_CHOICE (或者 CONFIG_BT_NIMBLE_PINNED_TO_CORE_CHOICE )选择将蓝牙 controller 以及 host 协议栈的 task 放在同一个 CPU 上,再通过 CONFIG_ESP32_WIFI_TASK_CORE_ID 选择将 Wi-Fi 协议栈 task 放在另一个 CPU 上。 :esp32s3: - 为了在共存情况下获得更好的 Wi-Fi 和蓝牙的通信性能,建议将 Wi-Fi 协议栈的 task 和蓝牙 Controller 以及 Host 协议栈的 task 运行在不同的 CPU 上,您可以通过 CONFIG_BT_CTRL_PINNED_TO_CORE_CHOICECONFIG_BT_BLUEDROID_PINNED_TO_CORE_CHOICE (或者 CONFIG_BT_NIMBLE_PINNED_TO_CORE_CHOICE )选择将蓝牙 controller 以及 host 协议栈的 task 放在同一个 CPU 上,再通过 CONFIG_ESP32_WIFI_TASK_CORE_ID 选择将 Wi-Fi 协议栈 task 放在另一个 CPU 上。 :esp32: - 在共存情况下 BLE SCAN 可能会被 Wi-Fi 打断且 Wi-Fi 在当前的 BLE scan window 结束前释放了 RF 资源。为了使 BLE 在当前的 scan window 内再次获取 RF 资源,您可以通过 CONFIG_BTDM_CTRL_FULL_SCAN_SUPPORTED 选择打开 FULL SCAN 配置选项。 :esp32c3 or esp32s3: - 在 BLE 连接过程中使用了 LE Coded PHY 时,为了防止蓝牙数据包持续时间较长而对 Wi-Fi 的性能产生严重影响,您可以在 CONFIG_BT_CTRL_COEX_PHY_CODED_TX_RX_TLIM 的子选项中选择 BT_CTRL_COEX_PHY_CODED_TX_RX_TLIM_EN ,打开限制 TX/RX 最大时间的配置选项。 :esp32c2: - 在 BLE 连接过程中使用了 LE Coded PHY 时,为了防止蓝牙数据包持续时间较长而对 Wi-Fi 的性能产生严重影响,您可以在 CONFIG_BT_LE_COEX_PHY_CODED_TX_RX_TLIM 的子选项中选择 BT_LE_COEX_PHY_CODED_TX_RX_TLIM_EN ,打开限制 TX/RX 最大时间的配置选项。 :SOC_BT_SUPPORTED or SOC_WIFI_SUPPORTED: - 您可以通过修改以下 menuconfig 选项,以减小内存开销:

SOC_BT_SUPPORTED

  • CONFIG_BT_BLE_DYNAMIC_ENV_MEMORY 选择打开蓝牙协议栈动态内存配置选项。

SOC_WIFI_SUPPORTED

  • CONFIG_ESP32_WIFI_STATIC_RX_BUFFER_NUM 选择减少 Wi-Fi 静态接收数据缓冲区的数量。
  • CONFIG_ESP32_WIFI_DYNAMIC_RX_BUFFER_NUM 选择减少 Wi-Fi 动态接收数据缓冲区的数量。
  • CONFIG_ESP32_WIFI_TX_BUFFER 选择使用动态分配发送数据缓冲区配置选项。
  • CONFIG_ESP32_WIFI_DYNAMIC_TX_BUFFER_NUM 选择减少 Wi-Fi 动态发送数据缓冲区的数量。
  • CONFIG_ESP32_WIFI_TX_BA_WIN 选择减少 Wi-Fi Block Ack TX 窗口的数量。
  • CONFIG_ESP32_WIFI_RX_BA_WIN 选择减少 Wi-Fi Block Ack RX 窗口的数量。
  • CONFIG_ESP32_WIFI_MGMT_SBUF_NUM 选择减少 Wi-Fi 管理短缓冲区的数量。
  • CONFIG_ESP32_WIFI_RX_IRAM_OPT 选择关闭此配置选项,关闭此配置选项将会减少大约 17 KB 的 IRAM 内存。
  • CONFIG_LWIP_TCP_SND_BUF_DEFAULT 选择减小 TCP 套接字默认发送缓存区。
  • CONFIG_LWIP_TCP_WND_DEFAULT 选择减小 TCP 套接字默认接收窗口。
  • CONFIG_LWIP_TCP_RECVMBOX_SIZE 可配置减小 TCP 接收邮箱。接受邮箱负责缓冲 TCP 连接中的数据,确保数据流畅传输。
  • CONFIG_LWIP_UDP_RECVMBOX_SIZE 选择减小 UDP 接收邮箱。
  • CONFIG_LWIP_TCPIP_RECVMBOX_SIZE 选择减小 TCPIP 任务接收邮箱。

Note

由于共存配置选项依赖于蓝牙配置选项,所以请先打开蓝牙配置选项,然后在 Wi-Fi 配置选项中打开共存配置选项。