Skip to content
This repository has been archived by the owner on Nov 22, 2022. It is now read-only.

facebookresearch/pytext

main
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
May 11, 2020 09:24
October 17, 2022 12:51
December 11, 2018 13:09
June 8, 2020 14:05
December 11, 2018 13:09
December 11, 2018 13:09
June 8, 2020 14:05

⚠️ Please migrate to torchtext ⚠️

PyText is deprecated and will no longer be actively maintained. Please check out torchtext and contribute there!

Overview

Support Ukraine CircleCI

PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapid experimentation and of serving models at scale. It achieves this by providing simple and extensible interfaces and abstractions for model components, and by using PyTorch’s capabilities of exporting models for inference via the optimized Caffe2 execution engine. We are using PyText in Facebook to iterate quickly on new modeling ideas and then seamlessly ship them at scale.

Core PyText features:

Installing PyText

PyText requires Python 3.6.1 or above.

To get started on a Cloud VM, check out our guide.

Get the source code:

  $ git clone https://github.com/facebookresearch/pytext
  $ cd pytext

Create a virtualenv and install PyText:

  $ python3 -m venv pytext_venv
  $ source pytext_venv/bin/activate
  (pytext_venv) $ pip install pytext-nlp

Detailed instructions and more installation options can be found in our Documentation. If you encounter issues with missing dependencies during installation, please refer to OS Dependencies.

Train your first text classifier

For this first example, we'll train a CNN-based text-classifier that classifies text utterances, using the examples in tests/data/train_data_tiny.tsv. The data and configs files can be obtained either by cloning the repository or by downloading the files manually from GitHub.

  (pytext_venv) $ pytext train < demo/configs/docnn.json

By default, the model is created in /tmp/model.pt

Now you can export your model as a caffe2 net:

  (pytext_venv) $ pytext export < demo/configs/docnn.json

You can use the exported caffe2 model to predict the class of raw utterances like this:

  (pytext_venv) $ pytext --config-file demo/configs/docnn.json predict <<< '{"text": "create an alarm for 1:30 pm"}'

More examples and tutorials can be found in Full Documentation.

Join the community

License

PyText is BSD-licensed, as found in the LICENSE file.