Skip to content

Latest commit

 

History

History
794 lines (623 loc) · 36.4 KB

README.rst

File metadata and controls

794 lines (623 loc) · 36.4 KB

image

JSONLab: compact, portable, robust JSON/binary-JSON encoder/decoder for MATLAB/Octave

image

Table of Contents

What's New

We are excited to announce that the JSONLab project, as the official reference library for both JData and BJData specifications, has been funded by the US National Institute of Health (NIH) as part of the NeuroJSON project (https://neurojson.org and https://neurojson.io).

The goal of the NeuroJSON project is to develop scalable, searchable, and reusable neuroimaging data formats and data sharing platforms. All data produced from the NeuroJSON project will be using JSON/Binary JData formats as the underlying serialization standards and the lightweight JData specification as language-independent data annotation standard, all of which have been evolved from the over a decade development of JSONLab.

JSONLab v2.9.8 - code named "Micronus Prime - beta" - is the beta-release of the next milestone (v3.0), containing a number of key feature enhancement and bug fixes. The major new features include

  1. exporting JSON Memory-Map for rapid disk-map like JSON/binary JSON reading and writing, implementing JSON-Mmap spec v1 Draft 1
  2. supporting JSONPath query (jsonpath) to MATLAB data and JSON/binary JSON file and streams, including deep-scan operators,
  3. (breaking) upgrading the supported BJData spec to V1 Draft 2 where the default numerical data byte order changed from Big-Endian to Little-Endian,
  4. adding initial support to JData _DataLink_ decoding to link multiple JSON/binary JSON files
  5. dynamically cache linked data files (jsoncache, jdlink) to permit on-demand download and processing of complex JSON-encoded datasets such as neuroimaging datasets hosted on https://neurojson.io
  6. support high-performance Blosc2 meta-compressor for storing large N-D array data,
  7. savejson/loadjson can use MATLAB/Octave built-in jsonencode/jsondecode using the BuiltinJSON option
  8. automatically switch from struct to containers.Map when encoded key-length exceeds 63
  9. provide fall-back zlib/gzip compression/decompression function on Octave when ZMat is not installed

There have been many major updates added to this release since the previous release v2.0 in June 2020. A list of the major changes are summarized below (with key features marked by *), including the support to BJData Draft-2 specification, new interface functions savejd/loadjd, and options to use MATLAB/Octave built-in jsonencode/jsondecode functions. The octave-jsonlab package has also been included in the official distributions of Debian Bullseye and Ubuntu 21.04 or newer.

  • 2024-03-24 [67f30ca] [feat] support using . or [] in JSONPath to escape dots in key names
  • 2024-03-24 [ee830cd] [bug] fix error_pos error when giving a non-existant input file
  • 2024-03-24 [d69686d] [feat] add jdlink to dynamically download and cache linked data
  • 2024-03-22 [772a1ef] [ci] fix octave failed test
  • 2024-03-22*[cff529a] [test] add jsonpath test, refine jsonpath syntax support
  • 2024-03-22 [22435e4] [bug] fix jsonpath handling of recursive deep scans
  • 2024-03-21 [c9f8a20] [bug] support deep scan in cell and struct, merge struct/containers.Map
  • 2024-03-21 [394394a] [bug] improve jsonpath cell with deep scan
  • 2024-03-20 [a599e71] [feat] add jsoncache to handle _DataLink download cache, rename jsonpath
  • 2024-02-19*[4f2edeb] [feat] support .. jsonpath operator for deep scan
  • 2024-01-11 [c43a758] [bug] fix missing index_esc reset, add test for automap
  • 2024-01-11*[ef5b472] [feat] automatically switch to map object when key length > 63
  • 2023-11-17 [ee24122] use sprintf to replace unescapejsonstring
  • 2023-11-12 [abe504f] [ci] test again on macos-12
  • 2023-11-12 [d2ff26a] [ci] install octave via conda on macos to avoid hanged install
  • 2023-11-07 [33263de] completely reformat m-files using miss_hit
  • 2023-11-07 [3ff781f] make octavezmat work on matlab
  • 2023-10-29 [ea4a4fd] make test script run on MATLAB R2010b
  • 2023-10-27 [ca91e07] use older matlab due to matlab-actions/run-command#43
  • 2023-10-27 [4bf8232] add NO_ZMAT flag, fix fread issue
  • 2023-10-27*[ce3c0a0] add fallback zlib/glib support on Octave via file-based zip/unzip
  • 2023-10-26 [7ab1b6e] fix error for expecting an ending object mark when count is given
  • 2023-09-08 [6dfa58e] Fix typos found by codespell
  • 2023-06-27 [7d7e7f7] fix typo of compression method
  • 2023-06-27*[c25dd0f] support blosc2 codecs in save and load data, upgrade jsave/jload
  • 2023-06-19 [b23181a] test root-level indentation
  • 2023-06-19 [5bfde65] add indentation test
  • 2023-06-19 [b267858] fix CI errors related to octave utf-8 handling
  • 2023-06-19 [1e93d07] avoid octave 6.4+ regexp non-utf8 error see discussions at octave bug thread: https://savannah.gnu.org/bugs/index.php?57107
  • 2023-06-15 [8f921ac] fix broken tests
  • 2023-06-11*[6cb5f12] allow linking binary jdata files inside json
  • 2023-06-10 [2d0649b] do not compress long string by default, read bjd from URI
  • 2023-06-10 [5135dea] saving JSON with UTF-8 encoding, fix #71
  • 2023-06-10*[a3c807f] add zstdencode and zstddecode via new version of zmat
  • 2023-06-07 [837c8b5] fix containers.Map indentiation bug with a single element
  • 2023-06-07 [747c99b] fix string indentation, add option EmptyArrayAsNull, fix #91
  • 2023-06-05*[cf57326] support blosc2 meta compressors
  • 2023-05-05 [d37a386] use {:} to expand varargin
  • 2023-04-23 [03311d2] remove README.txt, no longer used, fix #88
  • 2023-04-21 [49eceb0] Fix typo not found by codespell
  • 2023-04-21 [75b1fdc] Fix typos found by codespell
  • 2023-04-17 [8fea393] revert savejson change
  • 2023-04-17 [9554a44] Merge branch 'master' of github.com:fangq/jsonlab
  • 2023-04-17 [3c32aff] speed up string encoding and decoding
  • 2023-04-09*[8c8464f] rename jamm files to pmat - portable mat, will add jsonmmap
  • 2023-04-09 [aa1c2a4] drop ubuntu-18.04
  • 2023-04-08 [9173525] replace regexp to ismember due to octave bug 57107; test mac
  • 2023-04-08 [67065dc] fix matlab test
  • 2023-04-08 [8dcedad] use alternative test to avoid octave bug 57107
  • 2023-04-08*[9b6be7b] add github action based tests
  • 2023-02-24 [cb43ed1] add bug fix test section
  • 2023-02-24 [2412ebf] only simplify all-numeric or all-struct cells
  • 2023-02-23 [d4e77e1] add missing file extension
  • 2023-02-23 [408cc2e] fix loadjd and savejd file extension match, add jbids
  • 2023-02-22 [29bac9d] fix broken jdatahash
  • 2023-02-22*[69a7d01] add a portable data hash function
  • 2023-02-09 [0448eb1] preventing matlab 2022b converting string to unicode
  • 2022-11-21 [9ce91fc] handle empty struct with names, fix #85
  • 2022-11-20 [9687d17] accept string typed file name, close #84
  • 2022-08-12 [283e5f1] output data depends on nargout
  • 2022-08-08 [c729048] avoid conjugating complex numbers, fix #83
  • 2022-06-05*[fa35843] implementing JSON-Mmap spec draft 1, https://neurojson.org/jsonmmap/draft1
  • 2022-05-18 [8b74d30] make savejd work for saveh5 to save hdf5 files
  • 2022-04-19 [f1332e3] make banner image transparent background
  • 2022-04-19 [6cf82a6] fix issues found by dependency check
  • 2022-04-19 [94167bb] change neurojson urls to https
  • 2022-04-19 [c4c4da1] create Contents.m from matlab
  • 2022-04-19*[2278bb1] stop escaping / to / in JSON string, see https://mondotondo.com/2010/12/29/the-solidus-issue/
  • 2022-04-01*[fb711bb] add loadjd and savejd as the unified JSON/binary JSON file interface
  • 2022-03-30 [4433a21] improve datalink uri handling to consider : inside uri
  • 2022-03-30 [6368409] make datalink URL query more robust
  • 2022-03-29 [dd9e9c6] when file suffix is missing, assume JSON feed
  • 2022-03-29*[07c58f3] initial support for _DataLink of online/local file with JSONPath ref
  • 2022-03-29 [897b7ba] fix test for older octave
  • 2022-03-20 [bf03eff] force msgpack to use big-endian
  • 2022-03-13 [46bbfa9] support empty name key, which is valid in JSON, fix #79
  • 2022-03-12 [9ab040a] increase default float number digits from 10 to 16, fix #78
  • 2022-03-11 [485ea29] update error message on the valid root-level markers
  • 2022-02-23 [aa3913e] disable TFN marker in optimized header due to security risk and low benefit
  • 2022-02-23 [f2c3223] support SCH{[ markers in optimized container type
  • 2022-02-14 [540f95c] add optional preceding whitespace, explain format
  • 2022-02-13 [3dfa904] debugged and tested mmap, add mmapinclude and mmapexclude options
  • 2022-02-10*[6150ae1] handle uncompressed raw data (only base64 encoded) in jdatadecode
  • 2022-02-10 [88a59eb] give a warning when jdatadecode fails, but still return the raw data
  • 2022-02-03*[05edb7a] fast reading and writing json data record using mmap and jsonpath
  • 2022-02-02*[b0f0ebd] return disk-map or memory-map table in loadjson
  • 2022-02-01 [0888218] correct typos and add additional descriptions in README
  • 2022-02-01*[03133c7] fix row-major ('formatversion',1.8) ND array storage order, update demo outputs
  • 2022-02-01 [5998c70] revert variable name encoding to support unicode strings
  • 2022-01-31 [16454e7] test flexible whitespaces in 1D/2D arrays, test mixed array from string
  • 2022-01-31*[5c1ef15] accelerate fastarrayparser by 200%! jsonlab_speedtest cuts from 11s to 5.8s
  • 2022-01-30 [9b25e20] fix octave 3.8 error on travis, it does not support single
  • 2022-01-30 [5898f6e] add octave 5.2 to travis
  • 2022-01-30*[2e3344c] [bjdata:breaking] Upgrade savebj/loadbj to BJData v1-draft 2, use little-endian by default
  • 2022-01-30*[2e3344c] [bjdata:breaking] Fix optimized ND array element order (previously used column-major)
  • 2022-01-30*[2e3344c] optimize loadjson and loadbj speed
  • 2022-01-30*[2e3344c] add 'BuiltinJSON' option for savejson/loadjson to call jsonencode/jsondecode
  • 2022-01-30*[2e3344c] more robust tests on ND array when parsing JSON numerical array construct
  • 2021-06-23 [632531f] fix inconsistency between singlet integer and float values, close #70
  • 2021-06-23 [f7d8226] prevent function calls when parsing array strings using eval, fix #75
  • 2021-06-23 [b1ae5fa] fix #73 as a regression to #22
  • 2021-11-22*[ ] octave-jsonlab is officially in Debian Testing/Bullseye
  • 2020-09-29 [d0cb3b8] Fix for loading objects.
  • 2020-07-26 [d0fb684] Add travis badge
  • 2020-07-25 [708c36c] drop octave 3.2
  • 2020-07-25 [436d84e] debug octave 3.2
  • 2020-07-25 [0ce96ec] remove windows and osx targets from travis-ci
  • 2020-07-25 [0d8baa4] fix ruby does not support error on windows
  • 2020-07-25*[faa7921] enable travis-ci for jsonlab
  • 2020-07-08 [321ab1a] add Debian and Ubuntu installation commands
  • 2020-07-08 [e686828] update author info
  • 2020-07-08*[ce40fdf] supports ND cell array, fix #66
  • 2020-07-07 [6a8ce93] fix string encoding over 399 characters, close #65
  • 2020-06-14 [5a58faf] fix DESCRIPTION date bug
  • 2020-06-14 [9d7e94c] match octave description file and upstream version number
  • 2020-06-14 [a5b6170] fix warning about lz4encode file name

Please note that the savejson/loadjson in both JSONLab v2.0-v3.0 are compliant with JData Spec Draft 3; the savebj/loadbj in JSONLab v3.0 is compatible to BJData spec Draft 2, which contains breaking feature changes compared to those in JSONLab v2.0.

The BJData spec was derived from UBJSON spec Draft 12, with the following breaking differences:

  • BJData adds 4 new numeric data types: uint16 [u], uint32 [m], uint64 [M] and float16 [h] (supported in JSONLab v2.0 or newer)
  • BJData supports an optimized ND array container (supported in JSONLab since 2013)
  • BJData does not convert NaN/Inf/-Inf to null (supported in JSONLab since 2013)
  • BJData Draft 2 changes the default byte order to Little-Endian instead of Big-Endian (JSONLab 3.0 or later)
  • BJData only permits non-zero-fixed-length data types as the optimized array type, i.e. only UiuImlMLhdDC are allowed

To avoid using the new features, one should attach 'UBJSON',1 and 'Endian','B' in the savebj command as

savebj('',data,'FileName','myfile.bjd','UBJSON',1, 'Endian','B');

To read BJData data files generated by JSONLab v2.0, you should call

data=loadbj('my_old_data_file.bjd','Endian','B')

You are strongly encouraged to convert all pre-v2.9 JSONLab generated BJD or .pmat files using the new format.

Introduction

JSONLab is an open-source JSON/UBJSON/MessagePack encoder and decoder written completely in the native MATLAB language. It can be used to convert most MATLAB data structures (array, struct, cell, struct array, cell array, and objects) into JSON/UBJSON/MessagePack formatted strings and files, or to parse a JSON/UBJSON/MessagePack file into a MATLAB data structure. JSONLab supports both MATLAB and GNU Octave (a free MATLAB clone).

Compared to other MATLAB/Octave JSON parsers, JSONLab is uniquely lightweight, ultra-portable, producing dependable outputs across a wide-range of MATLAB (tested on R2008) and Octave (tested on v3.8) versions. It also uniquely supports BinaryJData/UBJSON/MessagePack data files as binary-JSON-like formats, designed for efficiency and flexibility with loss-less binary storage. As a parser written completely with the native MATLAB language, it is surprisingly fast when reading small-to-moderate sized JSON files (1-2 MB) with simple hierarchical structures, and is heavily optimized for reading JSON files containing large N-D arrays (known as the "fast array parser" in loadjson).

JSON (JavaScript Object Notation) is a highly portable, human-readable and "fat-free" text format to represent complex and hierarchical data, widely used for data-exchange in applications. UBJSON (Universal Binary JSON) is a binary JSON format, designed to specifically address the limitations of JSON, permitting the storage of binary data with strongly typed data records, resulting in smaller file sizes and fast encoding and decoding. MessagePack is another binary JSON-like data format widely used in data exchange in web/native applications. It is slightly more compact than UBJSON, but is not directly readable compared to UBJSON.

We envision that both JSON and its binary counterparts will play important roles for storage, exchange and interoperation of large-scale scientific data among the wide-variety of tools. As container-formats, they offer both the flexibility and generality similar to other more sophisticated formats such as HDF5, but are significantly simpler with a much greater software ecosystem.

Towards this goal, we have developed the JData Specification (http://github.com/NeuroJSON/jdata) to standardize serializations of complex scientific data structures, such as N-D arrays, sparse/complex-valued arrays, trees, maps, tables and graphs using JSON/binary JSON constructs. The text and binary formatted JData files are syntactically compatible with JSON/UBJSON formats, and can be readily parsed using existing JSON and UBJSON parsers. JSONLab is not just a parser and writer of JSON/UBJSON data files, but one that systematically converts complex scientific data structures into human-readable and universally supported JSON forms using the standardized JData data annotations.

Installation

The installation of JSONLab is no different from installing any other MATLAB toolbox. You only need to download/unzip the JSONLab package to a folder, and add the folder's path to MATLAB/Octave's path list by using the following command:

addpath('/path/to/jsonlab');

If you want to add this path permanently, you can type pathtool, browse to the JSONLab root folder and add to the list, then click "Save". Then, run rehash in MATLAB, and type which savejson, if you see an output, that means JSONLab is installed for MATLAB/Octave.

If you use MATLAB in a shared environment such as a Linux server, the best way to add path is to type

mkdir ~/matlab/
nano ~/matlab/startup.m

and type addpath('/path/to/jsonlab') in this file, save and quit the editor. MATLAB will execute this file every time it starts. For Octave, the file you need to edit is ~/.octaverc, where ~ is your home directory.

To use the data compression features, please download the ZMat toolbox from https://github.com/NeuroJSON/zmat/releases/latest and follow the instruction to install ZMat first. The ZMat toolbox is required when compression is used on MATLAB running in the -nojvm mode or GNU Octave, or 'lzma/lzip/lz4/lz4hc' compression methods are specified. ZMat can also compress large arrays that MATLAB's Java-based compression API does not support.

----------Install JSONLab on Fedora 24 or later ----------

JSONLab has been available as an official Fedora package since 2015. You may install it directly using the below command

sudo dnf install octave-jsonlab

To enable data compression/decompression, you need to install octave-zmat using

sudo dnf install octave-zmat

Then open Octave, and type pkg load jsonlab to enable jsonlab toolbox.

----------Install JSONLab on Debian ----------

JSONLab is currently available on Debian Bullseye. To install, you may run

sudo apt-get install octave-jsonlab

One can alternatively install matlab-jsonlab if MATLAB is available.

----------Install JSONLab on Ubuntu ----------

JSONLab is currently available on Ubuntu 21.04 or newer as package octave-jsonlab. To install, you may run

sudo apt-get install octave-jsonlab

For older Ubuntu releases, one can add the below PPA

https://launchpad.net/~fangq/+archive/ubuntu/ppa

To install, please run

sudo add-apt-repository ppa:fangq/ppa
sudo apt-get update

to add this PPA, and then use

sudo apt-get install octave-jsonlab

to install the toolbox. octave-zmat will be automatically installed.

----------Install JSONLab on Arch Linux ----------

JSONLab is also available on Arch Linux. You may install it using the below command

sudo pikaur -S jsonlab

Using JSONLab

JSONLab provides a pair of functions, loadjson -- a JSON parser, and savejson -- a MATLAB-to-JSON encoder, to read/write the text-based JSON; it also provides three equivalent pairs -- loadbj/savebj for binary JData, loadubjson/saveubjson for UBJSON and loadmsgpack/savemsgpack for MessagePack. The load* functions for the 3 supported data formats share almost the same input parameter format, similarly for the 3 save* functions (savejson/saveubjson/savemsgpack). These encoders and decoders are capable of processing/sharing almost all data structures supported by MATLAB, thanks to jdataencode/jdatadecode - a pair of in-memory data converters translating complex MATLAB data structures to their easy-to-serialized forms according to the JData specifications. The detailed help information can be found in the Contents.m file.

In JSONLab 2.9.8 and later versions, a unified file loading and saving interface is provided for JSON, binary JSON and HDF5, including loadjd and savejd for reading and writing below files types:

  • JSON based files: .json`,.jdt(text JData file),.jmsh(text JMesh file),.jnii(text JNIfTI file),.jnirs`` (text JSNIRF file)
  • BJData based files: .bjd`,.jdb` (binary JData file), .bmsh (binary JMesh file), .bnii (binary JNIfTI file), .bnirs (binary JSNIRF file), .pmat (MATLAB session file)
  • UBJSON based files: .ubj
  • MessagePack based files: .msgpack
  • HDF5 based files: .h5, .hdf5, .snirf (SNIRF fNIRS data files) - require EasyH5 toolbox

In the below section, we provide a few examples on how to us each of the core functions for encoding/decoding JSON/UBJSON/MessagePack data.

savejson.m

jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... 
         'MeshElem',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
         'MeshSurf',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
                    2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
         'MeshCreator','FangQ','MeshTitle','T6 Cube',...
         'SpecialData',[nan, inf, -inf]);
savejson(jsonmesh)
savejson('jmesh',jsonmesh)
savejson('',jsonmesh,'Compact',1)
savejson('jmesh',jsonmesh,'outputfile.json')
savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g','FileName','outputfile2.json')
savejson('cpxrand',eye(5)+1i*magic(5))
savejson('ziparray',eye(10),'Compression','zlib','CompressArraySize',1)
savejson('',jsonmesh,'ArrayToStruct',1)
savejson('',eye(10),'UseArrayShape',1)

loadjson.m

loadjson('{}')
dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
dat=loadjson(['examples' filesep 'example1.json'])
dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',0)

-------------savebj.m (saveubjson.m as an alias) -------------

a={single(rand(2)), struct('va',1,'vb','string'), 1+2i};
savebj(a)
savebj('rootname',a,'testdata.ubj')
savebj('zeros',zeros(100),'Compression','gzip')

-------------loadbj.m (loadubjson.m as an alias) -------------

obj=struct('string','value','array',single([1 2 3]),'empty',[],'magic',uint8(magic(5)));
ubjdata=savebj('obj',obj);
dat=loadbj(ubjdata)
class(dat.obj.array)
isequaln(obj,dat.obj)
dat=loadbj(savebj('',eye(10),'Compression','zlib','CompressArraySize',1))

----------jdataencode.m ----------

jd=jdataencode(struct('a',rand(5)+1i*rand(5),'b',[],'c',sparse(5,5)))
savejson('',jd)

----------jdatadecode.m ----------

rawdata=struct('a',rand(5)+1i*rand(5),'b',[],'c',sparse(5,5));
jd=jdataencode(rawdata)
newjd=jdatadecode(jd)
isequaln(newjd,rawdata)

examples

Under the examples folder, you can find several scripts to demonstrate the basic utilities of JSONLab. Running the demo_jsonlab_basic.m script, you will see the conversions from MATLAB data structure to JSON text and backward. In jsonlab_selftest.m, we load complex JSON files downloaded from the Internet and validate the loadjson/savejson functions for regression testing purposes. Similarly, a demo_ubjson_basic.m script is provided to test the saveubjson and loadubjson functions for various matlab data structures, and demo_msgpack_basic.m is for testing savemsgpack and loadmsgpack.

Please run these examples and understand how JSONLab works before you use it to process your data.

---------unit testing ---------

Under the test folder, you can find a script to test individual data types and inputs using various encoders and decoders. This unit testing script also serves as a specification validator to the JSONLab functions and ensure that the outputs are compliant to the underlying specifications.

Using jsave/jload to share workspace
Starting from JSONLab v2.0, we provide a pair of functions, jsave/jload to store
and retrieve variables from the current workspace, similar to the save/load
functions in MATLAB and Octave. The files that jsave/jload reads/writes is by
default a binary JData file with a suffix .pmat. The file size is comparable
(can be smaller if use lzma compression) to .mat files. This feature

is currently experimental.

The main benefits of using .pmat file to share matlab variables include

* a .pmat file can be 50% smaller than a .mat file when using

jsave(..., "compression","lzma"); the only drawback is longer saving time.

* a .pmat file can be readily read/opened among many programming environments, including

Python, JavaScript, Go, Java etc, where .mat file support is not generally available.

Parsers of .pmat files are largely compatible with BJData's parsers available at

https://neurojson.org/#software

* a .pmat file is quasi-human-readable, one can see the internal data fields

even in a command line, for example using strings -n 2 file.pmat | astyle,

making the binary data easy to be understood, shared and reused.

* jsave/jload can also use MessagePack and JSON formats as the underlying

data storage format, addressing needs from a diverse set of applications.

MessagePack parsers are readily available at https://msgpack.org/

----------
jsave.m

jsave % save the current workspace to default.pmat

jsave mydata.pmat

jsave('mydata.pmat','vars',{'var1','var2'})

jsave('mydata.pmat','compression','lzma')

jsave('mydata.json','compression','gzip')

----------
jload.m

jload % load variables from default.pmat to the current workspace

jload mydata.pmat % load variables from mydata.pmat

vars=jload('mydata.pmat','vars',{'var1','var2'}) % return vars.var1, vars.var2

jload('mydata.pmat','simplifycell',0)

jload('mydata.json')

================
Sharing JSONLab created data files in Python

Despite the use of portable data annotation defined by the JData Specification, the output JSON files created by JSONLab are 100% JSON compatible (with the exception that long strings may be broken into multiple lines for better readability). Therefore, JSONLab-created JSON files (.json, .jnii, .jnirs etc) can be readily read and written by nearly all existing JSON parsers, including the built-in json module parser in Python.

However, we strongly recommend one to use a lightweight jdata module, developed by the same author, to perform the extra JData encoding and decoding and convert JSON data directly to convenient Python/Numpy data structures. The jdata module can also directly read/write UBJSON/Binary JData outputs from JSONLab (.bjd, .ubj, .bnii, .bnirs, .pmat etc). Using binary JData files are expected to produce much smaller file sizes and faster parsing, while maintaining excellent portability and generality.

In short, to conveniently read/write data files created by JSONLab into Python, whether they are JSON based or binary JData/UBJSON based, one just need to download the below two light-weight python modules:

To install these modules on Python 2.x, please first check if your system has pip and numpy, if not, please install it by running (using Ubuntu/Debian as example)

sudo apt-get install python-pip python3-pip python-numpy python3-numpy

After the installation is done, one can then install the jdata and bjdata modules by

pip install jdata --user
pip install bjdata --user

To install these modules for Python 3.x, please replace pip by pip3. If one prefers to install these modules globally for all users, simply execute the above commands using

sudo pip install jdata
sudo pip install bjdata

The above modules require built-in Python modules json and NumPy (numpy).

Once the necessary modules are installed, one can type python (or python3), and run

import jdata as jd
import numpy as np
from collections import OrderedDict

data1=jd.loadt('myfile.json',object_pairs_hook=OrderedDict);
data2=jd.loadb('myfile.bjd',object_pairs_hook=OrderedDict);
data3=jd.loadb('myfile.pmat',object_pairs_hook=OrderedDict);

where jd.loadt() function loads a text-based JSON file, performs JData decoding and converts the enclosed data into Python dict, list and numpy objects. Similarly, jd.loadb() function loads a binary JData/UBJSON file and performs similar conversions. One can directly call jd.load() to open JSONLab (and derived toolboxes such as jnifti: https://github.com/NeuroJSON/jnifti or jsnirf: https://github.com/NeuroJSON/jsnirf) generated files based on their respective file suffix.

Similarly, the jd.savet(), jd.saveb() and jd.save functions can revert the direction and convert a Python/Numpy object into JData encoded data structure and store as text-, binary- and suffix-determined output files, respectively.

Known Issues and TODOs

JSONLab has several known limitations. We are striving to make it more general and robust. Hopefully in a few future releases, the limitations become less.

Here are the known issues:

  • 3D or higher dimensional cell/struct-arrays will be converted to 2D arrays
  • When processing names containing multi-byte characters, Octave and MATLAB can give different field-names; you can use feature('DefaultCharacterSet','latin1') in MATLAB to get consistent results
  • savejson can only export the properties from MATLAB classes, but not the methods
  • saveubjson converts a logical array into a uint8 ([U]) array
  • a special N-D array format, as defined in the JData specification, is implemented in saveubjson. You may use saveubjson(...,'NestArray',1) to create UBJSON Draft-12 compliant files
  • loadubjson can not parse all UBJSON Specification (Draft 12) compliant files, however, it can parse all UBJSON files produced by saveubjson.

Contribution and feedback

JSONLab is an open-source project. This means you can not only use it and modify it as you wish, but also you can contribute your changes back to JSONLab so that everyone else can enjoy the improvement. For anyone who want to contribute, please download JSONLab source code from its source code repositories by using the following command:

git clone https://github.com/fangq/jsonlab.git jsonlab

or browsing the github site at

https://github.com/fangq/jsonlab

Please report any bugs or issues to the below URL:

https://github.com/fangq/jsonlab/issues

Sometimes, you may find it is necessary to modify JSONLab to achieve your goals, or attempt to modify JSONLab functions to fix a bug that you have encountered. If you are happy with your changes and willing to share those changes to the upstream author, you are recommended to create a pull-request on github.

To create a pull-request, you first need to "fork" jsonlab on Github by clicking on the "fork" button on top-right of JSONLab's github page. Once you forked jsonlab to your own directory, you should then implement the changes in your own fork. After thoroughly testing it and you are confident the modification is complete and effective, you can then click on the "New pull request" button, and on the left, select fangq/jsonlab as the "base". Then type in the description of the changes. You are responsible to format the code updates using the same convention (tab-width: 8, indentation: 4 spaces) as the upstream code.

We appreciate any suggestions and feedbacks from you. Please use the following mailing list to report any questions you may have regarding JSONLab:

https://github.com/fangq/jsonlab/issues

(Subscription to the mailing list is needed in order to post messages).

Acknowledgement

---------loadjson.m ---------

The loadjson.m function was significantly modified from the earlier parsers (BSD 3-clause licensed) written by the below authors

---------loadmsgpack.m ---------

Copyright (c) 2014,2016 Bastian Bechtold All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

  • Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
  • Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
  • Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

---------zlibdecode.m, zlibencode.m, gzipencode.m, gzipdecode.m, base64encode.m, base64decode.m ---------

Copyright (c) 2012, Kota Yamaguchi All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

  • Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
  • Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.