Skip to content

Computed tomography (CT) is one of the most widely used radiography exams worldwide for different diagnostic applications. However, CT scans involve ioniz- ing radiational exposure, which raises health concerns. Counter-intuitively, low- ering the adequate CT dose level introduces noise and reduces the image quality, which may impact clinical di…

Notifications You must be signed in to change notification settings

fitushar/Study-of-Low-dose-to-High-dose-CT-using-Supervised-Learning-with-GAN-and-Virtual-Imaging-Trials

Repository files navigation

Study-of-Low-dose-to-High-dose-CT-using-Supervised-Learning-with-GAN-and-Virtual-Imaging-Trials

This study analyzed the feasibility of utilizing virtually generated CT images to generate high-dose CT from low-dose CT applying pix2pix cGANs. Different experiments were performed using single and multiple low-dose to high-dose CT mapping using 4 different pix2pix cGANs. Performance of all the model are comparable.

Abstract

Computed tomography (CT) is one of the most widely used radiography exams worldwide for different diagnostic applications. However, CT scans involve ioniz- ing radiational exposure, which raises health concerns. Counter-intuitively, low- ering the adequate CT dose level introduces noise and reduces the image quality, which may impact clinical diagnosis. This study analyzed the feasibility of using a conditional generative adversarial network (cGAN) called pix2pix to learn the mapping from low dose to high dose CT images under different conditions. This study included 270 three-dimensional (3D) CT scan images (85,050 slices) from 90 unique patients imaged virtually using virtual imaging trials platform for model development and testing. Performance was reported as peak signal-to-noise ra- tio (PSNR) and structural similarity index measure (SSIM). Experimental results demonstrated that mapping a single low-dose CT to high-dose CT and weighted two low-dose CTs to high-dose CT have comparable performances using pix2pix CGAN and applicability of using VITs.

Results

Study over-view

  • 1. pix2pix cGAN was adoped for model development.
  • 2. Generating Simulated CT scans utilizing VITs platform.
  • 3. Quantitative and qualitative performance analysis.

Key refrences:

@inproceedings{isola2017image,
  title={Image-to-image translation with conditional adversarial networks},
  author={Isola, Phillip and Zhu, Jun-Yan and Zhou, Tinghui and Efros, Alexei A},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={1125--1134},
  year={2017}
}

@article{abadi2021virtual,
  title={Virtual imaging trials for coronavirus disease (COVID-19)},
  author={Abadi, Ehsan and Segars, W Paul and Chalian, Hamid and Samei, Ehsan},
  journal={AJR. American journal of roentgenology},
  volume={216},
  number={2},
  pages={362},
  year={2021},
  publisher={NIH Public Access}
}

@inproceedings{tushar2022virtual,
  title={Virtual vs. reality: external validation of COVID-19 classifiers using XCAT phantoms for chest computed tomography},
  author={Tushar, Fakrul Islam and Abadi, Ehsan and Sotoudeh-Paima, Saman and Fricks, Rafael B and Mazurowski, Maciej A and Segars, W Paul and Samei, Ehsan and Lo, Joseph Y},
  booktitle={Medical Imaging 2022: Computer-Aided Diagnosis},
  volume={12033},
  pages={18--24},
  year={2022},
  organization={SPIE}
}

Data and Codes

  • 1. Dataset used in this study is not publicly avaible but can be consider access upon request.
  • 1. All the codes related to this project has been shared publicly within this repo, we will further discussed the code sctructure and in the How to run section.

How to Run

  • 1. Model were trained using tfrecords and the tfrecords were generated using the coding with the folders

Files

  * (1) Generate_tfrecords-|-> Generate tfrecords for training, testing and validation
            a) config_generate_denoising_tfrecords.py  |-- Configuration tfrecords generation hyperparameter.
            b) Preprocessing_utlities.py               |-- Preprocessing function such as Resampling,Hu cliping, and patch extraction functions                  
            c) main_generate_denoising_tfrecords.py    |-- Generate tfrecords, Main File
            d) CVIT_CT_data.csv                        |-- Data path info
 * (2) All you need to do is to modify the config_generate_denoising_tfrecords.py for wich data you want generate tfrecors-|-> 
       for cGAN_SD and cGAN_Dy ,USE_THE_DATASET=='CVIT_CT_5p7_28p5_57', and the path of the tfrecords

config_generate_denoising_tfrecords.py

import tensorflow as tf

#-----User input if there were multiple dataset options
USE_THE_DATASET    ='CVIT_CT_5p7_28p5_57'
starting_end_range = False
PATCH_PARAMS = { 'example_size': [256,256], #[hight x width]}
                 'resampling':[2.0,2.0,1.0],# resampling CT
                 'padding_value':-1}

STARTING_INDEX=0
END_INDEX     =1


if USE_THE_DATASET=='CVIT_CT_57_100_200':
    RAW_DATA_DIRECTORY_lower  ='/data/usr/ft42/nobackup/denoising_data_and_tfrecords/RAW_DATA/57mAs_noTCM_nifti_reorient/'
    RAW_DATA_DIRECTORY_medium ='/data/usr/ft42/nobackup/denoising_data_and_tfrecords/RAW_DATA/100mAs_noTCM_nifti_reorient/'
    RAW_DATA_DIRECTORY_high   ='/data/usr/ft42/nobackup/denoising_data_and_tfrecords/RAW_DATA/200mAs_noTCM_nifti_reorient/'

    NAMEOF_TF='DN_57_100_200'

    IMAGE_PATH_INDEX_NAME_lower  ='57mAs'   #index of the column having the data path of nifti.gz (nii.gz)
    IMAGE_PATH_INDEX_NAME_medium ='100mAs'   #index of the column having the data path of nifti.gz (nii.gz)
    IMAGE_PATH_INDEX_NAME_high ='200mAs'   #index of the column having the data path of nifti.gz (nii.gz)

    IMAGE_PATIENT_ID_INDEX_NAME   = 'Patient_ID'
    IMAGE_PHANTOM_ID_INDEX_NAME   = 'Phantom_ID'
    IMAGE_DISEAE_LABEL_INDEX_NAME = 'Diseased_label'


    FLIP_CT='False'
    DATA_CSV='CVIT_CT_data.csv'
    PATH_TO_SAVE_TFRECORDS='/data/usr/ft42/nobackup/denoising_data_and_tfrecords/denoising_tfrecords/tfrecords_DN_57_100_200/DN_57_100_200_tfrecords/'
    SAVING_PNG_OF_THE_PATCH_PNG='/data/usr/ft42/nobackup/denoising_data_and_tfrecords/denoising_tfrecords/tfrecords_DN_57_100_200/DN_57_100_200_tfrecords_png/'
    NAME_OF_PATH_CSV='Denoising_57_100_200_CVIT-Duke_patch1x160x160_spc5x2x2.csv'


if USE_THE_DATASET=='CVIT_CT_5p7_28p5_57':
    RAW_DATA_DIRECTORY_lower  ='/data/usr/ft42/nobackup/denoising_data_and_tfrecords/RAW_DATA/5p7mAs_noTCM_nifti_reorient/'
    RAW_DATA_DIRECTORY_medium ='/data/usr/ft42/nobackup/denoising_data_and_tfrecords/RAW_DATA/28p5mAs_noTCM_nifti_reorient/'
    RAW_DATA_DIRECTORY_high   ='/data/usr/ft42/nobackup/denoising_data_and_tfrecords/RAW_DATA/57mAs_noTCM_nifti_reorient/'

    NAMEOF_TF='DN_5p7_28p5_57'

    IMAGE_PATH_INDEX_NAME_lower  ='5p7mAs'   #index of the column having the data path of nifti.gz (nii.gz)
    IMAGE_PATH_INDEX_NAME_medium ='28p5mAs'   #index of the column having the data path of nifti.gz (nii.gz)
    IMAGE_PATH_INDEX_NAME_high   ='57mAs'   #index of the column having the data path of nifti.gz (nii.gz)

    IMAGE_PATIENT_ID_INDEX_NAME   = 'Patient_ID'
    IMAGE_PHANTOM_ID_INDEX_NAME   = 'Phantom_ID'
    IMAGE_DISEAE_LABEL_INDEX_NAME = 'Diseased_label'


    FLIP_CT='False'
    DATA_CSV='CVIT_CT_data.csv'
    PATH_TO_SAVE_TFRECORDS='/data/usr/ft42/nobackup/denoising_data_and_tfrecords/denoising_tfrecords/tfrecords_DN_5p7_28p5_57/5p7_28p5_57_tfrecords/'
    SAVING_PNG_OF_THE_PATCH_PNG='/data/usr/ft42/nobackup/denoising_data_and_tfrecords/denoising_tfrecords/tfrecords_DN_5p7_28p5_57/5p7_28p5_57_tfrecords_png/'
    NAME_OF_PATH_CSV='Denoising_5p7_28p5_57_CVIT-Duke_patch1x160x160_spc5x2x2.csv'

and use the USE_THE_DATASET=='CVIT_CT_5p7_57' and USE_THE_DATASET=='CVIT_CT_28p5_57'.

  • Configure the model configuration with in the config_pix2pix_2D_denoising.py file
import tensorflow as tf
import math
import numpy as np
import pandas as pd
import glob
import os



# The facade training set consist of 400 images


# The batch size of 1 produced better results for the U-Net in the original pix2pix experiment
BATCH_SIZE = 1
# Each image is 192x192x1 in size
IMG_WIDTH  = 256
IMG_HEIGHT = 256

NUMBER_OF_PARALLEL_CALL = 8
PARSHING                = 8
MODEL_TO_RUN ='Model_28p5mAs_to57mAs' # pick which model you want to run 
# for cGAN-SD5.7 MODEL_TO_RUN=='Model_5p7mAs_to57mAs'
# for cGAN-SD28.5 MODEL_TO_RUN=='Model_28p5mAs_to57mAs'
# for cGAN-DD MODEL_TO_RUN=='Model_5P7and28p5mAs_to57mAs'

LAMBDA = 100

ROOT_SAVING_PATHS='/data/usr/ft42/CVIT_Denoising/Denoising_pix2pix_model/'

if MODEL_TO_RUN=='Model_5p7mAs_to57mAs':
    BUFFER_SIZE = 15750
    TRAINING_DATASET_SIZE   = 15750
    VALIDATION_DATASET_SIZE = 6300
    TEST_DATASET_SIZE       = 6300

    LOGDIR             = ROOT_SAVING_PATHS+MODEL_TO_RUN+'/logs/'
    CHECKPOINT_DIR     = ROOT_SAVING_PATHS+MODEL_TO_RUN+'/training_checkpoints'
    GENERATE_IMAGE_DIR = ROOT_SAVING_PATHS+MODEL_TO_RUN+'/generated_denoising_img/'

    TRAIN_TFRECORDS_CSV  = '5p7_28p5_57mAs_train_tfrecords.csv'
    TRAIN_TFRECORDS_PATH = '/data/usr/ft42/nobackup/denoising_data_and_tfrecords/denoising_tfrecords/tfrecords_DN_5p7_28p5_57/5p7_28p5_57_tfrecords/'

    VALIDATION_TFRECORDS_CSV = '5p7_28p5_57mAs_val_tfrecords.csv'
    VALIDATION_TFRECORDS_PATH = '/data/usr/ft42/nobackup/denoising_data_and_tfrecords/denoising_tfrecords/tfrecords_DN_5p7_28p5_57/5p7_28p5_57_tfrecords/'

    TEST_TFRECORDS_CSV  = '5p7_28p5_57mAs_test_tfrecords.csv'
    TEST_TFRECORDS_PATH = '/data/usr/ft42/nobackup/denoising_data_and_tfrecords/denoising_tfrecords/tfrecords_DN_5p7_28p5_57/5p7_28p5_57_tfrecords/'

    DATA_CACHE_TR     = ROOT_SAVING_PATHS+MODEL_TO_RUN+"_train"
    DATA_CACHE_VAL    = ROOT_SAVING_PATHS+MODEL_TO_RUN+"_val"
    VALIDATION_PSNR_SSIM_CSV_PATH = ROOT_SAVING_PATHS+MODEL_TO_RUN+'/'+MODEL_TO_RUN+'_validation_df.csv'
    GENERATE_IMAGE_CSV= '5p7_28p5_57mAs_Generate_tfrecords.csv'

if MODEL_TO_RUN=='Model_28p5mAs_to57mAs':

    BUFFER_SIZE = 15750
    TRAINING_DATASET_SIZE   = 15750
    VALIDATION_DATASET_SIZE = 6300
    TEST_DATASET_SIZE       = 6300

    LOGDIR             = ROOT_SAVING_PATHS+MODEL_TO_RUN+'/logs/'
    CHECKPOINT_DIR     = ROOT_SAVING_PATHS+MODEL_TO_RUN+'/training_checkpoints'
    GENERATE_IMAGE_DIR = ROOT_SAVING_PATHS+MODEL_TO_RUN+'/generated_denoising_img/'

    TRAIN_TFRECORDS_CSV  = '5p7_28p5_57mAs_train_tfrecords.csv'
    TRAIN_TFRECORDS_PATH = '/data/usr/ft42/nobackup/denoising_data_and_tfrecords/denoising_tfrecords/tfrecords_DN_5p7_28p5_57/5p7_28p5_57_tfrecords/'

    VALIDATION_TFRECORDS_CSV =  '5p7_28p5_57mAs_val_tfrecords.csv'
    VALIDATION_TFRECORDS_PATH = '/data/usr/ft42/nobackup/denoising_data_and_tfrecords/denoising_tfrecords/tfrecords_DN_5p7_28p5_57/5p7_28p5_57_tfrecords/'

    TEST_TFRECORDS_CSV  = '5p7_28p5_57mAs_test_tfrecords.csv'
    TEST_TFRECORDS_PATH = '/data/usr/ft42/nobackup/denoising_data_and_tfrecords/denoising_tfrecords/tfrecords_DN_5p7_28p5_57/5p7_28p5_57_tfrecords/'

    DATA_CACHE_TR     = ROOT_SAVING_PATHS+MODEL_TO_RUN+"_train"
    DATA_CACHE_VAL    = ROOT_SAVING_PATHS+MODEL_TO_RUN+"_val"
    VALIDATION_PSNR_SSIM_CSV_PATH = ROOT_SAVING_PATHS+MODEL_TO_RUN+'/'+MODEL_TO_RUN+'_validation_df.csv'
    GENERATE_IMAGE_CSV= '5p7_28p5_57mAs_Generate_tfrecords.csv'


if MODEL_TO_RUN=='Model_5P7and28p5mAs_to57mAs':

    BUFFER_SIZE = 15750*2
    TRAINING_DATASET_SIZE   = 15750*2
    VALIDATION_DATASET_SIZE = 6300*2
    TEST_DATASET_SIZE       = 6300*2

    LOGDIR             = ROOT_SAVING_PATHS+MODEL_TO_RUN+'/logs/'
    CHECKPOINT_DIR     = ROOT_SAVING_PATHS+MODEL_TO_RUN+'/training_checkpoints'
    GENERATE_IMAGE_DIR = ROOT_SAVING_PATHS+MODEL_TO_RUN+'/generated_denoising_img/'

    TRAIN_TFRECORDS_CSV  = '5p7And28p5_57mAs_train_tfrecords.csv'
    TRAIN_TFRECORDS_PATH = '/data/usr/ft42/nobackup/denoising_data_and_tfrecords/denoising_tfrecords/tfrecords_DN_5p7and28p5_57/5p7and28p5_57_tfrecords/'

    VALIDATION_TFRECORDS_CSV =  '5p7And28p5_57mAs_val_tfrecords.csv'
    VALIDATION_TFRECORDS_PATH = '/data/usr/ft42/nobackup/denoising_data_and_tfrecords/denoising_tfrecords/tfrecords_DN_5p7and28p5_57/5p7and28p5_57_tfrecords/'

    TEST_TFRECORDS_CSV  = '5p7And28p5_57mAs_test_tfrecords.csv'
    TEST_TFRECORDS_PATH = '/data/usr/ft42/nobackup/denoising_data_and_tfrecords/denoising_tfrecords/tfrecords_DN_5p7and28p5_57/5p7and28p5_57_tfrecords/'
     
    GENERATE_IMAGE_CSV  = '5p7And28p5_57mAs_Generate_tfrecords.csv'

    DATA_CACHE_TR     = ROOT_SAVING_PATHS+MODEL_TO_RUN+"_train"
    DATA_CACHE_VAL    = ROOT_SAVING_PATHS+MODEL_TO_RUN+"_val"
    VALIDATION_PSNR_SSIM_CSV_PATH = ROOT_SAVING_PATHS+MODEL_TO_RUN+'/'+MODEL_TO_RUN+'_validation_df.csv'
  • to train: python train_pix2pix_2D_denoising.py
  • to test : python test_pix2pix_2D_denoising.py
  • to generate predicted denoised image : python generate_image_numpy.py

similarly to train, Test and generated predicted images for cGAN-Dy use codes with in the folder: https://github.com/fitushar/Study-of-Low-dose-to-High-dose-CT-using-Supervised-Learning-with-GAN-and-Virtual-Imaging-Trials/tree/main/cGAN_Dy

About

Computed tomography (CT) is one of the most widely used radiography exams worldwide for different diagnostic applications. However, CT scans involve ioniz- ing radiational exposure, which raises health concerns. Counter-intuitively, low- ering the adequate CT dose level introduces noise and reduces the image quality, which may impact clinical di…

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages