Skip to content

Latest commit

 

History

History
233 lines (156 loc) · 7.58 KB

geometric_manipulations.rst

File metadata and controls

233 lines (156 loc) · 7.58 KB

Geometric Manipulations

geopandas makes available all the tools for geometric manipulations in the *shapely* library.

Note that documentation for all set-theoretic tools for creating new shapes using the relationship between two different spatial datasets -- like creating intersections, or differences -- can be found on the set operations <set_operations> page.

Constructive Methods

GeoSeries.buffer(distance, resolution=16)

Returns a GeoSeries of geometries representing all points within a given distance of each geometric object.

GeoSeries.boundary

Returns a GeoSeries of lower dimensional objects representing each geometries's set-theoretic boundary.

GeoSeries.centroid

Returns a GeoSeries of points for each geometric centroid.

GeoSeries.convex_hull

Returns a GeoSeries of geometries representing the smallest convex Polygon containing all the points in each object unless the number of points in the object is less than three. For two points, the convex hull collapses to a LineString; for 1, a Point.

GeoSeries.envelope

Returns a GeoSeries of geometries representing the point or smallest rectangular polygon (with sides parallel to the coordinate axes) that contains each object.

GeoSeries.simplify(tolerance, preserve_topology=True)

Returns a GeoSeries containing a simplified representation of each object.

GeoSeries.unary_union

Return a geometry containing the union of all geometries in the GeoSeries.

Affine transformations

GeoSeries.affine_transform(self, matrix)

Transform the geometries of the GeoSeries using an affine transformation matrix

GeoSeries.rotate(self, angle, origin='center', use_radians=False)

Rotate the coordinates of the GeoSeries.

GeoSeries.scale(self, xfact=1.0, yfact=1.0, zfact=1.0, origin='center')

Scale the geometries of the GeoSeries along each (x, y, z) dimensio.

GeoSeries.skew(self, angle, origin='center', use_radians=False)

Shear/Skew the geometries of the GeoSeries by angles along x and y dimensions.

GeoSeries.translate(self, xoff=0.0, yoff=0.0, zoff=0.0)

Shift the coordinates of the GeoSeries.

Examples of Geometric Manipulations

python

>>> import geopandas >>> from geopandas import GeoSeries >>> from shapely.geometry import Polygon >>> p1 = Polygon([(0, 0), (1, 0), (1, 1)]) >>> p2 = Polygon([(0, 0), (1, 0), (1, 1), (0, 1)]) >>> p3 = Polygon([(2, 0), (3, 0), (3, 1), (2, 1)]) >>> g = GeoSeries([p1, p2, p3]) >>> g 0 POLYGON ((0 0, 1 0, 1 1, 0 0)) 1 POLYGON ((0 0, 1 0, 1 1, 0 1, 0 0)) 2 POLYGON ((2 0, 3 0, 3 1, 2 1, 2 0)) dtype: geometry

image

Some geographic operations return normal pandas object. The area property of a GeoSeries will return a pandas.Series containing the area of each item in the GeoSeries:

python

>>> print(g.area) 0 0.5 1 1.0 2 1.0 dtype: float64

Other operations return GeoPandas objects:

python

>>> g.buffer(0.5) 0 POLYGON ((-0.3535533905932737 0.35355339059327... 1 POLYGON ((-0.5 0, -0.5 1, -0.4975923633360985 ... 2 POLYGON ((1.5 0, 1.5 1, 1.502407636663901 1.04... dtype: geometry

image

GeoPandas objects also know how to plot themselves. GeoPandas uses descartes to generate a matplotlib plot. To generate a plot of our GeoSeries, use:

python

>>> g.plot()

GeoPandas also implements alternate constructors that can read any data format recognized by fiona. To read a zip file containing an ESRI shapefile with the borough boundaries of New York City (GeoPandas includes this as an example dataset):

python

>>> nybb_path = geopandas.datasets.get_path('nybb') >>> boros = geopandas.read_file(nybb_path) >>> boros.set_index('BoroCode', inplace=True) >>> boros.sort_index(inplace=True) >>> boros BoroName Shape_Leng Shape_Area BoroCode 1 Manhattan 359299.096471 6.364715e+08 2 Bronx 464392.991824 1.186925e+09 3 Brooklyn 741080.523166 1.937479e+09 4 Queens 896344.047763 3.045213e+09 5 Staten Island 330470.010332 1.623820e+09

geometry

BoroCode 1 MULTIPOLYGON (((981219.0557861328 188655.31579... 2 MULTIPOLYGON (((1012821.805786133 229228.26458... 3 MULTIPOLYGON (((1021176.479003906 151374.79699... 4 MULTIPOLYGON (((1029606.076599121 156073.81420... 5 MULTIPOLYGON (((970217.0223999023 145643.33221...

image

python

>>> boros['geometry'].convex_hull BoroCode 1 POLYGON ((977855.4451904297 188082.3223876953,... 2 POLYGON ((1017949.977600098 225426.8845825195,... 3 POLYGON ((988872.8212280273 146772.0317993164,... 4 POLYGON ((1000721.531799316 136681.776184082, ... 5 POLYGON ((915517.6877458114 120121.8812543372,... dtype: geometry

image

To demonstrate a more complex operation, we'll generate a GeoSeries containing 2000 random points:

python

>>> import numpy as np >>> from shapely.geometry import Point >>> xmin, xmax, ymin, ymax = 900000, 1080000, 120000, 280000 >>> xc = (xmax - xmin) * np.random.random(2000) + xmin >>> yc = (ymax - ymin) * np.random.random(2000) + ymin >>> pts = GeoSeries([Point(x, y) for x, y in zip(xc, yc)])

Now draw a circle with fixed radius around each point:

python

>>> circles = pts.buffer(2000)

We can collapse these circles into a single shapely MultiPolygon geometry with

python

>>> mp = circles.unary_union

To extract the part of this geometry contained in each borough, we can just use:

python

>>> holes = boros['geometry'].intersection(mp)

image

and to get the area outside of the holes:

python

>>> boros_with_holes = boros['geometry'].difference(mp)

image

Note that this can be simplified a bit, since geometry is available as an attribute on a GeoDataFrame, and the intersection and difference methods are implemented with the "&" and "-" operators, respectively. For example, the latter could have been expressed simply as boros.geometry - mp.

It's easy to do things like calculate the fractional area in each borough that are in the holes:

python

>>> holes.area / boros.geometry.area BoroCode 1 0.579939 2 0.586833 3 0.608174 4 0.582172 5 0.558075 dtype: float64