Permalink
Cannot retrieve contributors at this time
Join GitHub today
GitHub is home to over 40 million developers working together to host and review code, manage projects, and build software together.
Sign up
Fetching contributors…
| Add LoadPath "..". | |
| Require Import Homotopy. | |
| Section Pushout. | |
| (* We want to construct a pushout of this diagram: | |
| f | |
| C -----> B | |
| | | |
| g| | |
| | | |
| v | |
| A | |
| *) | |
| Variable A B C : Type. | |
| Variable f : C -> B. | |
| Variable g : C -> A. | |
| (* [map_from_diagram D] is the type of maps from the diagram to [D]. Concretely an element of this | |
| type is a map from [A] to [D], a map from [B] to [D], and a homotopy between the composites | |
| with [f] and [g]. *) | |
| Definition map_from_diagram (D : Type) := | |
| {t : A -> D & {u : B -> D & forall x : C, t (g x) ~~> u (f x)}}. | |
| (* If you have a map from the diagram to [D] and a map from [D] to [E], you can compose them to | |
| get a map from the diagram to [E] *) | |
| Definition compose_map_from_diag (D E : Type) (p : map_from_diagram D) (v : D -> E) : | |
| map_from_diagram E. | |
| Proof. | |
| destruct p as [t [u p]]. | |
| exists (compose v t). | |
| exists (compose v u). | |
| exact (fun x : C => map v (p x)). | |
| Defined. | |
| (* A homotopy pushout is a type [D] together with a map from the diagram [p] such that for all | |
| [E], the previous function is an equivalence between [D -> E] and [map_from_diagram E] *) | |
| Definition is_homotopy_pushout (D : Type) (p : map_from_diagram D) := | |
| forall (E : Type), is_equiv (compose_map_from_diag D E p). | |
| (* Now we define what should be the homotopy pushout is HoTT. Here is the underlying type. *) | |
| (* | |
| HigherInductive hopushout_type := | |
| | inl : A -> hopushout_type | |
| | inr : B -> hopushout_type | |
| | glue : forall x : C, inl (g x) ~~> inr (f x). | |
| *) | |
| (* Type *) | |
| Axiom hopushout_type : Type. | |
| (* Constructors *) | |
| Axiom inl : A -> hopushout_type. | |
| Axiom inr : B -> hopushout_type. | |
| Axiom glue : forall x : C, inl (g x) ~~> inr (f x). | |
| (* Dependent elimination rule *) | |
| Axiom hopushout_rect : forall P : hopushout_type -> Type, | |
| forall l : (forall a : A, P (inl a)), | |
| forall r : (forall b : B, P (inr b)), | |
| forall g' : (forall x : C, transport (glue x) (l (g x)) ~~> r (f x)), | |
| forall x : hopushout_type, P x. | |
| (* Dependent computation rules *) | |
| Axiom compute_inl : forall P l r g', forall (a : A), hopushout_rect P l r g' (inl a) ~~> l a. | |
| Axiom compute_inr : forall P l r g', forall (b : B), hopushout_rect P l r g' (inr b) ~~> r b. | |
| Axiom compute_glue : forall P l r g', forall (c : C), | |
| map_dep (hopushout_rect P l r g') (glue c) ~~> | |
| map (transport (glue c)) (compute_inl P l r g' (g c)) @ | |
| g' c @ | |
| !compute_inr P l r g' (f c). | |
| (* Non-dependent elimination rule *) | |
| Lemma hopushout_rect' : forall D : Type, | |
| forall l : A -> D, | |
| forall r : B -> D, | |
| forall g' : (forall x : C, l (g x) ~~> r (f x)), | |
| hopushout_type -> D. | |
| Proof. | |
| intros D l r g'. | |
| apply hopushout_rect with (P := fun _ => D) (l := l) (r := r). | |
| intro x. | |
| eapply concat. | |
| apply trans_trivial. | |
| apply g'. | |
| Defined. | |
| (* Non-dependent computation rules *) | |
| Lemma compute_inl' : forall D l r g', forall (a : A), hopushout_rect' D l r g' (inl a) ~~> l a. | |
| Proof. | |
| intros D l r g' a. | |
| apply compute_inl with (P := fun _ => D). | |
| Defined. | |
| Lemma compute_inr' : forall D l r g', forall (b : B), hopushout_rect' D l r g' (inr b) ~~> r b. | |
| Proof. | |
| intros D l r g' a. | |
| apply compute_inr with (P := fun _ => D). | |
| Defined. | |
| Lemma compute_glue' : forall D l r g', forall (c : C), | |
| map (hopushout_rect' D l r g') (glue c) ~~> | |
| compute_inl' D l r g' (g c) @ | |
| g' c @ | |
| !compute_inr' D l r g' (f c). | |
| Proof. | |
| intros D l r g' c. | |
| eapply concat. | |
| apply map_dep_trivial2. | |
| moveright_onleft. | |
| eapply concat. | |
| apply compute_glue with (P := fun _ => D). | |
| unwhisker. | |
| path_simplify. | |
| Defined. | |
| (* And here is the map from the diagram *) | |
| Definition hopushout_map : map_from_diagram (hopushout_type). | |
| Proof. | |
| exists inl. | |
| exists inr. | |
| exact glue. | |
| Defined. | |
| (* This is the map going backward, that we will use to prove that [compose_map_from_diag] is | |
| indeed an equivalence. *) | |
| Definition factor_pushout (E : Type) : map_from_diagram E -> (hopushout_type -> E). | |
| Proof. | |
| intros [t [u p]]. | |
| exact (hopushout_rect' _ t u p). | |
| Defined. | |
| Theorem homotopy_pushouts : is_homotopy_pushout hopushout_type hopushout_map. | |
| Proof. | |
| unfold is_homotopy_pushout. | |
| intro E. | |
| apply (hequiv_is_equiv _ (factor_pushout E)). | |
| intros [t [u p]]. | |
| unfold factor_pushout. | |
| unfold compose_map_from_diag. | |
| unfold hopushout_map. | |
| admit. (* In a perfect world, this would be a definitional equality (eta + HIT). I do not want | |
| to try to prove it here, it would be too complicated. *) | |
| intro x. | |
| apply funext; intro t. | |
| unfold factor_pushout. | |
| unfold compose_map_from_diag. | |
| unfold hopushout_map. | |
| (* Perfect world : *) | |
| (* induction t; simpl. *) | |
| (*/ Perfect world *) | |
| (* Not-so-perfect world : *) | |
| Definition P_induction (E : Type) (x : hopushout_type -> E) (t : hopushout_type) := | |
| hopushout_rect' E (compose x inl) (compose x inr) (fun x0 : C => map x (glue x0)) t ~~> x t. | |
| Lemma induction_inl : forall E x, forall a : A, P_induction E x (inl a). | |
| Proof. | |
| intros E x a. | |
| unfold P_induction. | |
| eapply concat. | |
| apply compute_inl'. | |
| auto. | |
| Defined. | |
| Lemma induction_inr : forall E x, forall b : B, P_induction E x (inr b). | |
| Proof. | |
| intros E x b. | |
| eapply concat. | |
| apply compute_inr'. | |
| auto. | |
| Defined. | |
| Lemma induction_transp : forall E x, | |
| forall u v : hopushout_type, forall p : u ~~> v, forall q : P_induction E x u, | |
| transport (P := P_induction E x) p q ~~> map _ (!p) @ q @ map x p. | |
| Proof. | |
| path_induction. | |
| cancel_units. | |
| Defined. | |
| Lemma induction_glue : forall E x, forall c : C, | |
| transport (P := P_induction E x) (glue c) (induction_inl E x (g c)) ~~> induction_inr E x (f c). | |
| Proof. | |
| intros E x c. | |
| eapply concat. | |
| apply induction_transp. | |
| do_opposite_map. | |
| moveright_onright. | |
| moveright_onright. | |
| eapply concat. | |
| set (p := compute_glue' E (x ○ inl) (x ○ inr) (fun x0 : C => map x (glue x0)) c). | |
| eexact (map opposite p). | |
| unfold induction_inr, induction_inl. | |
| cancel_units. | |
| undo_opposite_concat. | |
| unwhisker. | |
| Defined. | |
| exact (hopushout_rect (P_induction E x) (induction_inl E x) (induction_inr E x) | |
| (induction_glue E x) t). | |
| (*/ Not-so-perfect world *) | |
| Defined. | |
| End Pushout. |