Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
121 lines (85 sloc) 6.08 KB

Data Transfer

Transfer data into and from Python. All the methods are defined in isc.py.Main. All methods return %Status.

Python -> InterSystems IRIS

  • GetVariable(variable, serialization, .stream, useString) - get serialization of variable in stream. If useString is 1 and variable serialization can fit into string then string is returned instead of the stream.
  • GetVariableJson(variable, .stream, useString) - get JSON serialization of variable.
  • GetVariablePickle(variable, .stream, useString, useDill) - get Pickle (or Dill) serialization of variable.

InterSystems IRIS -> Python

Load data from InterSystems IRIS to Python. All these methods support data transfer from any local namespace. isc.py package must be available in namespace.

ExecuteQuery

ExecuteQuery(query, variable, type, namespace) - transfer results from any valid SQL query into Python. It is the slowest method of data transfer. Use it if ExecuteGlobal and its wrappers are unavailable.

Arguments:

  • query - sql query
  • variable - target variable on a Python side
  • type - list or Pandas dataframe

ExecuteGlobal

ExecuteGlobal(global, variable, type, start, end, mask, labels, namespace) - transfer global data to Python.

Arguments:

  • global - global name without ^
  • variable - target variable on a Python side
  • type - list or Pandas dataframe
  • start - initial global key. Must be integer.
  • end - final global key. Must be integer.
  • mask - string, mask for global values. Mask may be shorter than the number of global value fields (in this case fields at the end would be skipped). How to format mask:
    • + use field as is
    • - skip field
    • b - boolean (0 - False, anything else - True)
    • d - date (from $horolog, on Windows only from 1970, on Linux from 1900 see notes for details)
    • t - time ($horolog, seconds since midnight)
    • m - (moment) timestamp string in YEAR-MONTH-DAY HOUR:MINUTE:SECOND format.
  • labels - %List of column names, first element is key column name. Therefore: List length must be mask symbol length + 1.

ExecuteClass

Wrapper for ExecuteGlobal. Effectively it parses compiled class definition, constructs ExecuteGlobal arguments and calls it.

ExecuteClass(class, variable, type, start, end, properties, namespace) - transfer class data to Python list of tuples or pandas dataframe. properties - comma-separated list of properties to form dataframe from. * and ? wildcards are supported. Defaults to * (all properties). %%CLASSNAME property is ignored. Only stored properties can be used.

Arguments:

  • class - class name
  • variable - target variable on a Python side
  • type - list or Pandas dataframe
  • start - initial object id. Must be integer.
  • end - final object id. Must be integer.
  • properties - comma-separated list of properties to form dataframe from. * and ? wildcards are supported. Defaults to * (all properties). %%CLASSNAME property is ignored. Only stored properties can be used.

All properties transferred as is except properties of %Date, %Time, %Boolean and %TimeStamp types. They are converted to respective Python datatypes.

ExecuteTable

Wrapper for ExecuteClass. Translates table name to class name and calls ExecuteClass. Signature:

ExecuteTable(table, variable, type, start, end, properties, namespace) - transfer table data to Python list of tuples or pandas dataframe.

Arguments:

  • table - table name.

Other arguments are passed as is to ExecuteClass.

Notes

  • ExecuteGlobal, ExecuteClass and ExecuteTable generally offer the same speed (as the time to parse class definition is negligible).
  • ExecuteGlobal is 3-5 times faster than ODBC driver and up to 20 times faster than ExecuteQuery on measurable workloads (>0.01 second).
  • ExecuteGlobal, ExecuteClass and ExecuteTable only work on the globals with this structure: ^global(key) = $lb(prop1, prop2, ..., propN) where key must be an integer.
  • For ExecuteGlobal, ExecuteClass and ExecuteTable supported %Date range equals mktime range (windows: 1970-01-01, linux 1900-01-01, mac). Use %TimeStamp to transfer dates outside of this range.
  • For ExecuteGlobal, ExecuteClass and ExecuteTable all arguments besides the source (global, class, table) and variable are optional.

Examples

Let's say we have isc.py.test.Person class. Here's how we can use all methods of data transfer:

// All the ways to transfer data
set global = "isc.py.test.PersonD"
set class = "isc.py.test.Person"
set table = "isc_py_test.Person"
set query = "SELECT * FROM isc_py_test.Person"

// Common arguments
set variable = "df"
set type = "dataframe"
set start = 1
set end = $g(^isc.py.test.PersonD, start)

// Approach 0: ExecuteGlobal without arguments
set sc = ##class(isc.py.Main).ExecuteGlobal(global, variable _ 0, type)

// Approach 1: ExecuteGlobal with arguments	
// For global transfer labels are not calculated automatically
// globalKey - is global subscript
set labels = $lb("globalKey", "Name", "DOB", "TS", "RandomTime", "AgeYears", "AgeDecimal", "AgeDouble", "Bool")

// mask is 1 element shorter than labels because "globalKey" is global subscript label
// Here we want to skip %%CLASSNAME field
set mask = "-+dmt+++b"

set sc = ##class(isc.py.Main).ExecuteGlobal(global, variable _ 1, type, start, end, mask, labels)

// Approach 2: ExecuteClass
set sc = ##class(isc.py.Main).ExecuteClass(class, variable _ 2, type, start, end)

// Approach 3: ExecuteTable
set sc = ##class(isc.py.Main).ExecuteTable(table, variable _ 3, type, start, end)

// Approach 4: ExecuteQuery
set sc = ##class(isc.py.Main).ExecuteQuery(query, variable _ 4, type)

You can call this method: do ##class(isc.py.test.Person).Test() to check how these data transfer methods work.

You can’t perform that action at this time.