forked from dalek-cryptography/ed25519-dalek
-
Notifications
You must be signed in to change notification settings - Fork 1
/
ed25519.rs
1194 lines (1030 loc) · 40.3 KB
/
ed25519.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// -*- mode: rust; -*-
//
// This file is part of ed25519-dalek.
// Copyright (c) 2017 Isis Lovecruft
// See LICENSE for licensing information.
//
// Authors:
// - Isis Agora Lovecruft <isis@patternsinthevoid.net>
//! A Rust implementation of ed25519 EdDSA key generation, signing, and
//! verification.
use core::fmt::{Debug};
#[cfg(feature = "std")]
use rand::Rng;
#[cfg(feature = "serde")]
use serde::{Serialize, Deserialize};
#[cfg(feature = "serde")]
use serde::{Serializer, Deserializer};
#[cfg(feature = "serde")]
use serde::de::Error as SerdeError;
#[cfg(feature = "serde")]
use serde::de::Visitor;
#[cfg(feature = "sha2")]
use sha2::Sha512;
use digest::Digest;
use generic_array::typenum::U64;
use curve25519_dalek::constants;
use curve25519_dalek::edwards::CompressedEdwardsY;
use curve25519_dalek::edwards::EdwardsPoint;
use curve25519_dalek::scalar::Scalar;
use subtle::ConstantTimeEq;
use errors::DecodingError;
use errors::InternalError;
/// The length of a curve25519 EdDSA `Signature`, in bytes.
pub const SIGNATURE_LENGTH: usize = 64;
/// The length of a curve25519 EdDSA `SecretKey`, in bytes.
pub const SECRET_KEY_LENGTH: usize = 32;
/// The length of an ed25519 EdDSA `PublicKey`, in bytes.
pub const PUBLIC_KEY_LENGTH: usize = 32;
/// The length of an ed25519 EdDSA `Keypair`, in bytes.
pub const KEYPAIR_LENGTH: usize = SECRET_KEY_LENGTH + PUBLIC_KEY_LENGTH;
/// The length of the "key" portion of an "expanded" curve25519 EdDSA secret key, in bytes.
const EXPANDED_SECRET_KEY_KEY_LENGTH: usize = 32;
/// The length of the "nonce" portion of an "expanded" curve25519 EdDSA secret key, in bytes.
const EXPANDED_SECRET_KEY_NONCE_LENGTH: usize = 32;
/// The length of an "expanded" curve25519 EdDSA key, `ExpandedSecretKey`, in bytes.
pub const EXPANDED_SECRET_KEY_LENGTH: usize = EXPANDED_SECRET_KEY_KEY_LENGTH + EXPANDED_SECRET_KEY_NONCE_LENGTH;
/// An EdDSA signature.
///
/// # Note
///
/// These signatures, unlike the ed25519 signature reference implementation, are
/// "detached"—that is, they do **not** include a copy of the message which has
/// been signed.
#[derive(Copy)]
#[repr(C)]
pub struct Signature {
/// `r` is an `EdwardsPoint`, formed by using an hash function with
/// 512-bits output to produce the digest of:
///
/// - the nonce half of the `ExpandedSecretKey`, and
/// - the message to be signed.
///
/// This digest is then interpreted as a `Scalar` and reduced into an
/// element in ℤ/lℤ. The scalar is then multiplied by the distinguished
/// basepoint to produce `r`, and `EdwardsPoint`.
pub (crate) r: CompressedEdwardsY,
/// `s` is a `Scalar`, formed by using an hash function with 512-bits output
/// to produce the digest of:
///
/// - the `r` portion of this `Signature`,
/// - the `PublicKey` which should be used to verify this `Signature`, and
/// - the message to be signed.
///
/// This digest is then interpreted as a `Scalar` and reduced into an
/// element in ℤ/lℤ.
pub (crate) s: Scalar,
}
impl Clone for Signature {
fn clone(&self) -> Self { *self }
}
impl Debug for Signature {
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
write!(f, "Signature( r: {:?}, s: {:?} )", &self.r, &self.s)
}
}
impl Eq for Signature {}
impl PartialEq for Signature {
fn eq(&self, other: &Signature) -> bool {
let mut equal: u8 = 0;
for i in 0..32 {
equal |= self.r.0[i] ^ other.r.0[i];
equal |= self.s[i] ^ other.s[i];
}
equal == 0
}
}
impl Signature {
/// Convert this `Signature` to a byte array.
#[inline]
pub fn to_bytes(&self) -> [u8; SIGNATURE_LENGTH] {
let mut signature_bytes: [u8; SIGNATURE_LENGTH] = [0u8; SIGNATURE_LENGTH];
signature_bytes[..32].copy_from_slice(&self.r.as_bytes()[..]);
signature_bytes[32..].copy_from_slice(&self.s.as_bytes()[..]);
signature_bytes
}
/// Construct a `Signature` from a slice of bytes.
#[inline]
pub fn from_bytes(bytes: &[u8]) -> Result<Signature, DecodingError> {
if bytes.len() != SIGNATURE_LENGTH {
return Err(DecodingError(InternalError::BytesLengthError{
name: "Signature", length: SIGNATURE_LENGTH }));
}
let mut lower: [u8; 32] = [0u8; 32];
let mut upper: [u8; 32] = [0u8; 32];
lower.copy_from_slice(&bytes[..32]);
upper.copy_from_slice(&bytes[32..]);
if upper[31] & 224 != 0 {
return Err(DecodingError(InternalError::ScalarFormatError));
}
Ok(Signature{ r: CompressedEdwardsY(lower), s: Scalar::from_bits(upper) })
}
}
#[cfg(feature = "serde")]
impl Serialize for Signature {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: Serializer {
serializer.serialize_bytes(&self.to_bytes()[..])
}
}
#[cfg(feature = "serde")]
impl<'d> Deserialize<'d> for Signature {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: Deserializer<'d> {
struct SignatureVisitor;
impl<'d> Visitor<'d> for SignatureVisitor {
type Value = Signature;
fn expecting(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
formatter.write_str("An ed25519 signature as 64 bytes, as specified in RFC8032.")
}
fn visit_bytes<E>(self, bytes: &[u8]) -> Result<Signature, E> where E: SerdeError{
Signature::from_bytes(bytes).or(Err(SerdeError::invalid_length(bytes.len(), &self)))
}
}
deserializer.deserialize_bytes(SignatureVisitor)
}
}
/// An EdDSA secret key.
#[repr(C)]
pub struct SecretKey(pub (crate) [u8; SECRET_KEY_LENGTH]);
impl Debug for SecretKey {
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
write!(f, "SecretKey: {:?}", &self.0[..])
}
}
impl SecretKey {
/// Expand this `SecretKey` into an `ExpandedSecretKey`.
pub fn expand<D>(&self) -> ExpandedSecretKey where D: Digest<OutputSize = U64> + Default {
ExpandedSecretKey::from_secret_key::<D>(&self)
}
/// Convert this secret key to a byte array.
#[inline]
pub fn to_bytes(&self) -> [u8; SECRET_KEY_LENGTH] {
self.0
}
/// View this secret key as a byte array.
#[inline]
pub fn as_bytes<'a>(&'a self) -> &'a [u8; SECRET_KEY_LENGTH] {
&self.0
}
/// Construct a `SecretKey` from a slice of bytes.
///
/// # Example
///
/// ```
/// # extern crate ed25519_dalek;
/// #
/// use ed25519_dalek::SecretKey;
/// use ed25519_dalek::SECRET_KEY_LENGTH;
/// use ed25519_dalek::DecodingError;
///
/// # fn doctest() -> Result<SecretKey, DecodingError> {
/// let secret_key_bytes: [u8; SECRET_KEY_LENGTH] = [
/// 157, 097, 177, 157, 239, 253, 090, 096,
/// 186, 132, 074, 244, 146, 236, 044, 196,
/// 068, 073, 197, 105, 123, 050, 105, 025,
/// 112, 059, 172, 003, 028, 174, 127, 096, ];
///
/// let secret_key: SecretKey = SecretKey::from_bytes(&secret_key_bytes)?;
/// #
/// # Ok(secret_key)
/// # }
/// #
/// # fn main() {
/// # let result = doctest();
/// # assert!(result.is_ok());
/// # }
/// ```
///
/// # Returns
///
/// A `Result` whose okay value is an EdDSA `SecretKey` or whose error value
/// is an `DecodingError` wrapping the internal error that occurred.
#[inline]
pub fn from_bytes(bytes: &[u8]) -> Result<SecretKey, DecodingError> {
if bytes.len() != SECRET_KEY_LENGTH {
return Err(DecodingError(InternalError::BytesLengthError{
name: "SecretKey", length: SECRET_KEY_LENGTH }));
}
let mut bits: [u8; 32] = [0u8; 32];
bits.copy_from_slice(&bytes[..32]);
Ok(SecretKey(bits))
}
/// Generate a `SecretKey` from a `csprng`.
///
/// # Example
///
/// ```
/// extern crate rand;
/// extern crate sha2;
/// extern crate ed25519_dalek;
///
/// # fn main() {
///
/// use rand::Rng;
/// use rand::OsRng;
/// use sha2::Sha512;
/// use ed25519_dalek::PublicKey;
/// use ed25519_dalek::SecretKey;
/// use ed25519_dalek::Signature;
///
/// let mut csprng: OsRng = OsRng::new().unwrap();
/// let secret_key: SecretKey = SecretKey::generate(&mut csprng);
///
/// # }
/// ```
///
/// Afterwards, you can generate the corresponding public—provided you also
/// supply a hash function which implements the `Digest` and `Default`
/// traits, and which returns 512 bits of output—via:
///
/// ```
/// # extern crate rand;
/// # extern crate sha2;
/// # extern crate ed25519_dalek;
/// #
/// # fn main() {
/// #
/// # use rand::Rng;
/// # use rand::OsRng;
/// # use sha2::Sha512;
/// # use ed25519_dalek::PublicKey;
/// # use ed25519_dalek::SecretKey;
/// # use ed25519_dalek::Signature;
/// #
/// # let mut csprng: OsRng = OsRng::new().unwrap();
/// # let secret_key: SecretKey = SecretKey::generate(&mut csprng);
///
/// let public_key: PublicKey = PublicKey::from_secret::<Sha512>(&secret_key);
/// # }
/// ```
///
/// The standard hash function used for most ed25519 libraries is SHA-512,
/// which is available with `use sha2::Sha512` as in the example above.
/// Other suitable hash functions include Keccak-512 and Blake2b-512.
///
/// # Input
///
/// A CSPRNG with a `fill_bytes()` method, e.g. the one returned
/// from `rand::OsRng::new()` (in the `rand` crate).
///
#[cfg(feature = "std")]
pub fn generate(csprng: &mut Rng) -> SecretKey {
let mut sk: SecretKey = SecretKey([0u8; 32]);
csprng.fill_bytes(&mut sk.0);
sk
}
}
#[cfg(feature = "serde")]
impl Serialize for SecretKey {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: Serializer {
serializer.serialize_bytes(self.as_bytes())
}
}
#[cfg(feature = "serde")]
impl<'d> Deserialize<'d> for SecretKey {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: Deserializer<'d> {
struct SecretKeyVisitor;
impl<'d> Visitor<'d> for SecretKeyVisitor {
type Value = SecretKey;
fn expecting(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
formatter.write_str("An ed25519 secret key as 32 bytes, as specified in RFC8032.")
}
fn visit_bytes<E>(self, bytes: &[u8]) -> Result<SecretKey, E> where E: SerdeError {
SecretKey::from_bytes(bytes).or(Err(SerdeError::invalid_length(bytes.len(), &self)))
}
}
deserializer.deserialize_bytes(SecretKeyVisitor)
}
}
/// An "expanded" secret key.
///
/// This is produced by using an hash function with 512-bits output to digest a
/// `SecretKey`. The output digest is then split in half, the lower half being
/// the actual `key` used to sign messages, after twiddling with some bits.¹ The
/// upper half is used a sort of half-baked, ill-designed² pseudo-domain-separation
/// "nonce"-like thing, which is used during signature production by
/// concatenating it with the message to be signed before the message is hashed.
//
// ¹ This results in a slight bias towards non-uniformity at one spectrum of
// the range of valid keys. Oh well: not my idea; not my problem.
//
// ² It is the author's view (specifically, isis agora lovecruft, in the event
// you'd like to complain about me, again) that this is "ill-designed" because
// this doesn't actually provide true hash domain separation, in that in many
// real-world applications a user wishes to have one key which is used in
// several contexts (such as within tor, which does does domain separation
// manually by pre-concatenating static strings to messages to achieve more
// robust domain separation). In other real-world applications, such as
// bitcoind, a user might wish to have one master keypair from which others are
// derived (à la BIP32) and different domain separators between keys derived at
// different levels (and similarly for tree-based key derivation constructions,
// such as hash-based signatures). Leaving the domain separation to
// application designers, who thus far have produced incompatible,
// slightly-differing, ad hoc domain separation (at least those application
// designers who knew enough cryptographic theory to do so!), is therefore a
// bad design choice on the part of the cryptographer designing primitives
// which should be simple and as foolproof as possible to use for
// non-cryptographers. Further, later in the ed25519 signature scheme, as
// specified in RFC8032, the public key is added into *another* hash digest
// (along with the message, again); it is unclear to this author why there's
// not only one but two poorly-thought-out attempts at domain separation in the
// same signature scheme, and which both fail in exactly the same way. For a
// better-designed, Schnorr-based signature scheme, see Trevor Perrin's work on
// "generalised EdDSA" and "VXEdDSA".
#[repr(C)]
pub struct ExpandedSecretKey {
pub (crate) key: Scalar,
pub (crate) nonce: [u8; 32],
}
#[cfg(feature = "sha2")]
impl<'a> From<&'a SecretKey> for ExpandedSecretKey {
/// Construct an `ExpandedSecretKey` from a `SecretKey`.
///
/// # Examples
///
/// ```
/// # extern crate rand;
/// # extern crate sha2;
/// # extern crate ed25519_dalek;
/// #
/// # fn main() {
/// #
/// use rand::{Rng, OsRng};
/// use sha2::Sha512;
/// use ed25519_dalek::{SecretKey, ExpandedSecretKey};
///
/// let mut csprng: OsRng = OsRng::new().unwrap();
/// let secret_key: SecretKey = SecretKey::generate(&mut csprng);
/// let expanded_secret_key: ExpandedSecretKey = ExpandedSecretKey::from(&secret_key);
/// # }
/// ```
fn from(secret_key: &'a SecretKey) -> ExpandedSecretKey {
ExpandedSecretKey::from_secret_key::<Sha512>(&secret_key)
}
}
impl ExpandedSecretKey {
/// Convert this `ExpandedSecretKey` into an array of 64 bytes.
///
/// # Returns
///
/// An array of 64 bytes. The first 32 bytes represent the "expanded"
/// secret key, and the last 32 bytes represent the "domain-separation"
/// "nonce".
///
/// # Examples
///
/// ```
/// # extern crate rand;
/// # extern crate sha2;
/// # extern crate ed25519_dalek;
/// #
/// # #[cfg(feature = "sha2")]
/// # fn main() {
/// #
/// use rand::{Rng, OsRng};
/// use sha2::Sha512;
/// use ed25519_dalek::{SecretKey, ExpandedSecretKey};
///
/// let mut csprng: OsRng = OsRng::new().unwrap();
/// let secret_key: SecretKey = SecretKey::generate(&mut csprng);
/// let expanded_secret_key: ExpandedSecretKey = ExpandedSecretKey::from(&secret_key);
/// let expanded_secret_key_bytes: [u8; 64] = expanded_secret_key.to_bytes();
///
/// assert!(&expanded_secret_key_bytes[..] != &[0u8; 64][..]);
/// # }
/// #
/// # #[cfg(not(feature = "sha2"))]
/// # fn main() { }
/// ```
#[inline]
pub fn to_bytes(&self) -> [u8; EXPANDED_SECRET_KEY_LENGTH] {
let mut bytes: [u8; 64] = [0u8; 64];
bytes[..32].copy_from_slice(self.key.as_bytes());
bytes[32..].copy_from_slice(&self.nonce[..]);
bytes
}
/// Construct an `ExpandedSecretKey` from a slice of bytes.
///
/// # Returns
///
/// A `Result` whose okay value is an EdDSA `ExpandedSecretKey` or whose
/// error value is an `DecodingError` describing the error that occurred.
///
/// # Examples
///
/// ```
/// # extern crate rand;
/// # extern crate sha2;
/// # extern crate ed25519_dalek;
/// #
/// use rand::{Rng, OsRng};
/// use ed25519_dalek::{SecretKey, ExpandedSecretKey};
/// use ed25519_dalek::DecodingError;
///
/// # #[cfg(feature = "sha2")]
/// # fn do_test() -> Result<ExpandedSecretKey, DecodingError> {
/// #
/// let mut csprng: OsRng = OsRng::new().unwrap();
/// let secret_key: SecretKey = SecretKey::generate(&mut csprng);
/// let expanded_secret_key: ExpandedSecretKey = ExpandedSecretKey::from(&secret_key);
/// let bytes: [u8; 64] = expanded_secret_key.to_bytes();
/// let expanded_secret_key_again = ExpandedSecretKey::from_bytes(&bytes)?;
/// #
/// # Ok(expanded_secret_key_again)
/// # }
/// #
/// # #[cfg(feature = "sha2")]
/// # fn main() {
/// # let result = do_test();
/// # assert!(result.is_ok());
/// # }
/// #
/// # #[cfg(not(feature = "sha2"))]
/// # fn main() {}
/// ```
#[inline]
pub fn from_bytes(bytes: &[u8]) -> Result<ExpandedSecretKey, DecodingError> {
if bytes.len() != EXPANDED_SECRET_KEY_LENGTH {
return Err(DecodingError(InternalError::BytesLengthError{
name: "ExpandedSecretKey", length: EXPANDED_SECRET_KEY_LENGTH }));
}
let mut lower: [u8; 32] = [0u8; 32];
let mut upper: [u8; 32] = [0u8; 32];
lower.copy_from_slice(&bytes[00..32]);
upper.copy_from_slice(&bytes[32..64]);
Ok(ExpandedSecretKey{ key: Scalar::from_bits(lower),
nonce: upper })
}
/// Construct an `ExpandedSecretKey` from a `SecretKey`, using hash function `D`.
///
/// # Examples
///
/// ```
/// # extern crate rand;
/// # extern crate sha2;
/// # extern crate ed25519_dalek;
/// #
/// # fn do_test() {
/// #
/// use rand::{Rng, OsRng};
/// use sha2::Sha512;
/// use ed25519_dalek::{SecretKey, ExpandedSecretKey};
///
/// let mut csprng: OsRng = OsRng::new().unwrap();
/// let secret_key: SecretKey = SecretKey::generate(&mut csprng);
/// let expanded_secret_key: ExpandedSecretKey = ExpandedSecretKey::from_secret_key::<Sha512>(&secret_key);
/// # }
/// #
/// # fn main() { do_test(); }
/// ```
pub fn from_secret_key<D>(secret_key: &SecretKey) -> ExpandedSecretKey
where D: Digest<OutputSize = U64> + Default {
let mut h: D = D::default();
let mut hash: [u8; 64] = [0u8; 64];
let mut lower: [u8; 32] = [0u8; 32];
let mut upper: [u8; 32] = [0u8; 32];
h.input(secret_key.as_bytes());
hash.copy_from_slice(h.fixed_result().as_slice());
lower.copy_from_slice(&hash[00..32]);
upper.copy_from_slice(&hash[32..64]);
lower[0] &= 248;
lower[31] &= 63;
lower[31] |= 64;
ExpandedSecretKey{ key: Scalar::from_bits(lower), nonce: upper, }
}
/// Sign a message with this `ExpandedSecretKey`.
pub fn sign<D>(&self, message: &[u8], public_key: &PublicKey) -> Signature
where D: Digest<OutputSize = U64> + Default {
let mut h: D = D::default();
let mut hash: [u8; 64] = [0u8; 64];
let mesg_digest: Scalar;
let hram_digest: Scalar;
let r: EdwardsPoint;
let s: Scalar;
h.input(&self.nonce);
h.input(&message);
hash.copy_from_slice(h.fixed_result().as_slice());
mesg_digest = Scalar::from_bytes_mod_order_wide(&hash);
r = &mesg_digest * &constants::ED25519_BASEPOINT_TABLE;
h = D::default();
h.input(r.compress().as_bytes());
h.input(public_key.as_bytes());
h.input(&message);
hash.copy_from_slice(h.fixed_result().as_slice());
hram_digest = Scalar::from_bytes_mod_order_wide(&hash);
s = &(&hram_digest * &self.key) + &mesg_digest;
Signature{ r: r.compress(), s: s }
}
}
#[cfg(feature = "serde")]
impl Serialize for ExpandedSecretKey {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: Serializer {
serializer.serialize_bytes(&self.to_bytes()[..])
}
}
#[cfg(feature = "serde")]
impl<'d> Deserialize<'d> for ExpandedSecretKey {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: Deserializer<'d> {
struct ExpandedSecretKeyVisitor;
impl<'d> Visitor<'d> for ExpandedSecretKeyVisitor {
type Value = ExpandedSecretKey;
fn expecting(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
formatter.write_str("An ed25519 expanded secret key as 64 bytes, as specified in RFC8032.")
}
fn visit_bytes<E>(self, bytes: &[u8]) -> Result<ExpandedSecretKey, E> where E: SerdeError {
ExpandedSecretKey::from_bytes(bytes).or(Err(SerdeError::invalid_length(bytes.len(), &self)))
}
}
deserializer.deserialize_bytes(ExpandedSecretKeyVisitor)
}
}
/// An ed25519 public key.
#[derive(Copy, Clone, Eq, PartialEq)]
#[repr(C)]
pub struct PublicKey(pub (crate) CompressedEdwardsY);
impl Debug for PublicKey {
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
write!(f, "PublicKey( CompressedEdwardsY( {:?} ))", self.0)
}
}
impl PublicKey {
/// Convert this public key to a byte array.
#[inline]
pub fn to_bytes(&self) -> [u8; PUBLIC_KEY_LENGTH] {
self.0.to_bytes()
}
/// View this public key as a byte array.
#[inline]
pub fn as_bytes<'a>(&'a self) -> &'a [u8; PUBLIC_KEY_LENGTH] {
&(self.0).0
}
/// Construct a `PublicKey` from a slice of bytes.
///
/// # Warning
///
/// The caller is responsible for ensuring that the bytes passed into this
/// method actually represent a `curve25519_dalek::curve::CompressedEdwardsY`
/// and that said compressed point is actually a point on the curve.
///
/// # Example
///
/// ```
/// # extern crate ed25519_dalek;
/// #
/// use ed25519_dalek::PublicKey;
/// use ed25519_dalek::PUBLIC_KEY_LENGTH;
/// use ed25519_dalek::DecodingError;
///
/// # fn doctest() -> Result<PublicKey, DecodingError> {
/// let public_key_bytes: [u8; PUBLIC_KEY_LENGTH] = [
/// 215, 90, 152, 1, 130, 177, 10, 183, 213, 75, 254, 211, 201, 100, 7, 58,
/// 14, 225, 114, 243, 218, 166, 35, 37, 175, 2, 26, 104, 247, 7, 81, 26];
///
/// let public_key = PublicKey::from_bytes(&public_key_bytes)?;
/// #
/// # Ok(public_key)
/// # }
/// #
/// # fn main() {
/// # doctest();
/// # }
/// ```
///
/// # Returns
///
/// A `Result` whose okay value is an EdDSA `PublicKey` or whose error value
/// is an `DecodingError` describing the error that occurred.
#[inline]
pub fn from_bytes(bytes: &[u8]) -> Result<PublicKey, DecodingError> {
if bytes.len() != PUBLIC_KEY_LENGTH {
return Err(DecodingError(InternalError::BytesLengthError{
name: "PublicKey", length: PUBLIC_KEY_LENGTH }));
}
let mut bits: [u8; 32] = [0u8; 32];
bits.copy_from_slice(&bytes[..32]);
Ok(PublicKey(CompressedEdwardsY(bits)))
}
/// Convert this public key to its underlying extended twisted Edwards coordinate.
#[inline]
fn decompress(&self) -> Option<EdwardsPoint> {
self.0.decompress()
}
/// Derive this public key from its corresponding `SecretKey`.
#[allow(unused_assignments)]
pub fn from_secret<D>(secret_key: &SecretKey) -> PublicKey
where D: Digest<OutputSize = U64> + Default {
let mut h: D = D::default();
let mut hash: [u8; 64] = [0u8; 64];
let mut digest: [u8; 32] = [0u8; 32];
let pk: [u8; 32];
h.input(secret_key.as_bytes());
hash.copy_from_slice(h.fixed_result().as_slice());
digest.copy_from_slice(&hash[..32]);
digest[0] &= 248;
digest[31] &= 127;
digest[31] |= 64;
pk = (&Scalar::from_bits(digest) * &constants::ED25519_BASEPOINT_TABLE).compress().to_bytes();
PublicKey(CompressedEdwardsY(pk))
}
/// Verify a signature on a message with this keypair's public key.
///
/// # Return
///
/// Returns true if the signature was successfully verified, and
/// false otherwise.
pub fn verify<D>(&self, message: &[u8], signature: &Signature) -> bool
where D: Digest<OutputSize = U64> + Default
{
use curve25519_dalek::edwards::vartime;
let mut h: D = D::default();
let mut a: EdwardsPoint;
let ao: Option<EdwardsPoint>;
let mut digest: [u8; 64] = [0u8; 64];
ao = self.decompress();
if ao.is_some() {
a = ao.unwrap();
} else {
return false;
}
a = -(&a);
h.input(signature.r.as_bytes());
h.input(self.as_bytes());
h.input(&message);
digest.copy_from_slice(h.fixed_result().as_slice());
let digest_reduced: Scalar = Scalar::from_bytes_mod_order_wide(&digest);
let r: EdwardsPoint = vartime::double_scalar_mul_basepoint(&digest_reduced, &a, &signature.s);
(signature.r.as_bytes()).ct_eq(r.compress().as_bytes()).unwrap_u8() == 1
}
}
#[cfg(feature = "serde")]
impl Serialize for PublicKey {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: Serializer {
serializer.serialize_bytes(self.as_bytes())
}
}
#[cfg(feature = "serde")]
impl<'d> Deserialize<'d> for PublicKey {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: Deserializer<'d> {
struct PublicKeyVisitor;
impl<'d> Visitor<'d> for PublicKeyVisitor {
type Value = PublicKey;
fn expecting(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
formatter.write_str("An ed25519 public key as a 32-byte compressed point, as specified in RFC8032")
}
fn visit_bytes<E>(self, bytes: &[u8]) -> Result<PublicKey, E> where E: SerdeError {
PublicKey::from_bytes(bytes).or(Err(SerdeError::invalid_length(bytes.len(), &self)))
}
}
deserializer.deserialize_bytes(PublicKeyVisitor)
}
}
/// An ed25519 keypair.
#[derive(Debug)]
#[repr(C)]
pub struct Keypair {
/// The secret half of this keypair.
pub secret: SecretKey,
/// The public half of this keypair.
pub public: PublicKey,
}
impl Keypair {
/// Convert this keypair to bytes.
///
/// # Returns
///
/// An array of bytes, `[u8; KEYPAIR_LENGTH]`. The first
/// `SECRET_KEY_LENGTH` of bytes is the `SecretKey`, and the next
/// `PUBLIC_KEY_LENGTH` bytes is the `PublicKey` (the same as other
/// libraries, such as [Adam Langley's ed25519 Golang
/// implementation](https://github.com/agl/ed25519/)).
pub fn to_bytes(&self) -> [u8; KEYPAIR_LENGTH] {
let mut bytes: [u8; KEYPAIR_LENGTH] = [0u8; KEYPAIR_LENGTH];
bytes[..SECRET_KEY_LENGTH].copy_from_slice(self.secret.as_bytes());
bytes[SECRET_KEY_LENGTH..].copy_from_slice(self.public.as_bytes());
bytes
}
/// Construct a `Keypair` from the bytes of a `PublicKey` and `SecretKey`.
///
/// # Inputs
///
/// * `bytes`: an `&[u8]` representing the scalar for the secret key, and a
/// compressed Edwards-Y coordinate of a point on curve25519, both as bytes.
/// (As obtained from `Keypair::to_bytes()`.)
///
/// # Warning
///
/// Absolutely no validation is done on the key. If you give this function
/// bytes which do not represent a valid point, or which do not represent
/// corresponding parts of the key, then your `Keypair` will be broken and
/// it will be your fault.
///
/// # Returns
///
/// A `Result` whose okay value is an EdDSA `Keypair` or whose error value
/// is an `DecodingError` describing the error that occurred.
pub fn from_bytes<'a>(bytes: &'a [u8]) -> Result<Keypair, DecodingError> {
if bytes.len() != KEYPAIR_LENGTH {
return Err(DecodingError(InternalError::BytesLengthError{
name: "Keypair", length: KEYPAIR_LENGTH}));
}
let secret = SecretKey::from_bytes(&bytes[..SECRET_KEY_LENGTH])?;
let public = PublicKey::from_bytes(&bytes[SECRET_KEY_LENGTH..])?;
Ok(Keypair{ secret: secret, public: public })
}
/// Generate an ed25519 keypair.
///
/// # Example
///
/// ```
/// extern crate rand;
/// extern crate sha2;
/// extern crate ed25519_dalek;
///
/// # fn main() {
///
/// use rand::Rng;
/// use rand::OsRng;
/// use sha2::Sha512;
/// use ed25519_dalek::Keypair;
/// use ed25519_dalek::Signature;
///
/// let mut cspring: OsRng = OsRng::new().unwrap();
/// let keypair: Keypair = Keypair::generate::<Sha512>(&mut cspring);
///
/// # }
/// ```
///
/// # Input
///
/// A CSPRNG with a `fill_bytes()` method, e.g. the one returned
/// from `rand::OsRng::new()` (in the `rand` crate).
///
/// The caller must also supply a hash function which implements the
/// `Digest` and `Default` traits, and which returns 512 bits of output.
/// The standard hash function used for most ed25519 libraries is SHA-512,
/// which is available with `use sha2::Sha512` as in the example above.
/// Other suitable hash functions include Keccak-512 and Blake2b-512.
#[cfg(feature = "std")]
pub fn generate<D>(csprng: &mut Rng) -> Keypair
where D: Digest<OutputSize = U64> + Default {
let sk: SecretKey = SecretKey::generate(csprng);
let pk: PublicKey = PublicKey::from_secret::<D>(&sk);
Keypair{ public: pk, secret: sk }
}
/// Sign a message with this keypair's secret key.
pub fn sign<D>(&self, message: &[u8]) -> Signature
where D: Digest<OutputSize = U64> + Default {
self.secret.expand::<D>().sign::<D>(&message, &self.public)
}
/// Verify a signature on a message with this keypair's public key.
pub fn verify<D>(&self, message: &[u8], signature: &Signature) -> bool
where D: Digest<OutputSize = U64> + Default {
self.public.verify::<D>(message, signature)
}
}
#[cfg(feature = "serde")]
impl Serialize for Keypair {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: Serializer {
serializer.serialize_bytes(&self.to_bytes()[..])
}
}
#[cfg(feature = "serde")]
impl<'d> Deserialize<'d> for Keypair {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: Deserializer<'d> {
struct KeypairVisitor;
impl<'d> Visitor<'d> for KeypairVisitor {
type Value = Keypair;
fn expecting(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
formatter.write_str("An ed25519 keypair, 64 bytes in total where the secret key is \
the first 32 bytes and is in unexpanded form, and the second \
32 bytes is a compressed point for a public key.")
}
fn visit_bytes<E>(self, bytes: &[u8]) -> Result<Keypair, E> where E: SerdeError {
let secret_key = SecretKey::from_bytes(&bytes[..SECRET_KEY_LENGTH]);
let public_key = PublicKey::from_bytes(&bytes[SECRET_KEY_LENGTH..]);
if secret_key.is_ok() && public_key.is_ok() {
Ok(Keypair{ secret: secret_key.unwrap(), public: public_key.unwrap() })
} else {
Err(SerdeError::invalid_length(bytes.len(), &self))
}
}
}
deserializer.deserialize_bytes(KeypairVisitor)
}
}
#[cfg(test)]
mod test {
use std::io::BufReader;
use std::io::BufRead;
use std::fs::File;
use std::string::String;
use std::vec::Vec;
use curve25519_dalek::edwards::EdwardsPoint;
use rand::OsRng;
use hex::FromHex;
use sha2::Sha512;
use super::*;
#[cfg(all(test, feature = "serde"))]
static PUBLIC_KEY: PublicKey = PublicKey(CompressedEdwardsY([
130, 039, 155, 015, 062, 076, 188, 063,
124, 122, 026, 251, 233, 253, 225, 220,
014, 041, 166, 120, 108, 035, 254, 077,
160, 083, 172, 058, 219, 042, 086, 120, ]));
#[cfg(all(test, feature = "serde"))]
static SECRET_KEY: SecretKey = SecretKey([
062, 070, 027, 163, 092, 182, 011, 003,
077, 234, 098, 004, 011, 127, 079, 228,
243, 187, 150, 073, 201, 137, 076, 022,
085, 251, 152, 002, 241, 042, 072, 054, ]);
/// Signature with the above keypair of a blank message.
#[cfg(all(test, feature = "serde"))]
static SIGNATURE_BYTES: [u8; SIGNATURE_LENGTH] = [
010, 126, 151, 143, 157, 064, 047, 001,
196, 140, 179, 058, 226, 152, 018, 102,
160, 123, 080, 016, 210, 086, 196, 028,
053, 231, 012, 157, 169, 019, 158, 063,
045, 154, 238, 007, 053, 185, 227, 229,
079, 108, 213, 080, 124, 252, 084, 167,
216, 085, 134, 144, 129, 149, 041, 081,
063, 120, 126, 100, 092, 059, 050, 011, ];
#[test]
fn unmarshal_marshal() { // TestUnmarshalMarshal
let mut cspring: OsRng;
let mut keypair: Keypair;
let mut x: Option<EdwardsPoint>;
let a: EdwardsPoint;
let public: PublicKey;
cspring = OsRng::new().unwrap();
// from_bytes() fails if vx²-u=0 and vx²+u=0
loop {
keypair = Keypair::generate::<Sha512>(&mut cspring);
x = keypair.public.decompress();
if x.is_some() {
a = x.unwrap();
break;
}
}
public = PublicKey(a.compress());
assert!(keypair.public.0 == public.0);
}
#[test]
fn sign_verify() { // TestSignVerify
let mut cspring: OsRng;
let keypair: Keypair;