Skip to content

Publications

john warner edited this page Jan 21, 2024 · 30 revisions

Warner, J.C., Armstrong, B., He, R., and Zambon, J.B., (2010). Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system: Ocean Modeling, v. 35, no. 3, p. 230-244.

Kumar, N., Voulgaris, G., and Warner, J.C. (2011). Implementation and modification of a three-dimensional radiation stress formulation for surf zone and rip-current applications, Coastal Engineering, 58, 1097-1117, doi:10.1016/j.coastaleng.2011.06.009.

Olabarrieta, M., J. C. Warner, and N. Kumar (2011), Wave-current interaction in Willapa Bay, J. Geophys. Res., 116, C12014, doi:10.1029/2011JC007387.

Olabarrieta, M., Warner, J.C., and Armstrong, B. (2012). “Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: an atmosphere-ocean-wave coupled modeling system application.” Ocean Modelling, 43-44, pp 112-137.

Kumar, N., Voulgaris, G., Warner, J.C., and M., Olabarrieta (2012). Implementation of a vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner-shelf and surf-zone applications. Ocean Modeling 47, pp 65-95.

Nelson, J. and R. He, (2012), Effect of the Gulf Stream on winter extratropical cyclone outbreaks, Atmosphere Research Letters, doi: 10.1002/asl.400.

Renault, L., J. Chiggiato, J. C. Warner, M. Gomez, G. Vizoso, and J. Tintoré (2012), Coupled atmosphere-ocean-wave simulations of a storm event over the Gulf of Lion and Balearic Sea, J. Geophys. Res., 117, C09019, doi:10.1029/2012JC007924.

Benetazzo, A., Carniel, S., Sclavo, M., and Bergamasco, A. (2013). Wave-current interaction: effect on the wave field in a semi-enclosed basin. Ocean Modeling, 70, 152-165.

Nelson, J. He, R., and Warner, J.C., Bane, J. (2014). Air-Sea Interactions during Strong Winter Extratropical Storms, Ocean Dynamics. doi:10.1007/s10236-014-0745-2.

Grifoll, M., A. L. Aretxabaleta, J. L. Pelegr ı, M. Espino, J. C. Warner, and A. Sanchez-Arcilla (2014), Seasonal circulation over the Catalan inner-shelf (northwest Mediterranean Sea), J. Geophys. Res. Oceans, doi:10.1002/2014JC010187.

Zambon, J.B., He, R., and Warner, J.C. (2014). Investigation of Hurricane Ivan using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Model, Ocean Dynamics, DOI 10.1007/s10236-014-0777-7.

Grifoll, M., Gracia, V., Aretxabaleta, A., Guillen, J., Espino, M., Warner, J.C. (2014). Formation of fine sediment deposit from a flash-flood river in the Mediterranean Sea. Journal of Geophysical Research, Oceans, 119, 5837-5853, doi:10.1002/2014JC010187.

Rong, Z., Hetland, R., Zhang, W., and Zhang, X. (2014). Current-wave interaction in the Mississippi-Atchafalaya river plume on the Texas-Louisiana shelf. Ocean Modelling, 84, 67-83.

Zambon, J.B., He, R., and Warner, J.C. (2014). Tropical to Extratropical: Marine Environmental Changes Associated with Superstorm Sandy Prior to its Landfall, Geophysical Research Letters, 41, doi:10.1002/2014GL061357.

M.J. Lewis, S.P. Neill, M.R. Hashemi, M. Reza (2014). Realistic wave conditions and their influence on quantifying the tidal stream energy resource, Applied Energy, Vol 136, pp 495-508, ISSN 0306-2619, http://dx.doi.org/10.1016/j.apenergy.2014.09.061.

Spydell, M. S., F. Feddersen, M. Olabarrieta, J. Chen, R. T. Guza, B. Raubenheimer, and S. Elgar (2015), Observed and modeled drifters at a tidal inlet, J. Geophys. Res. Oceans, 120, 4825–4844, doi:10.1002/2014JC010541.

Defne, Z. and Ganju, N.K., 2015. Quantifying the residence time and flushing characteristics of a shallow, back-barrier estuary: Application of hydrodynamic and particle tracking models. Estuaries and Coasts, 38(5), pp.1719-1734.

M. Reza Hashemi, Simon P. Neill & Alan G. Davies (2015) A coupled tidewave model for the NW European shelf seas, Geophysical & Astrophysical Fluid Dynamics, 109:3, 234-253, DOI: 10.1080/03091929.2014.944909.

Danqin Ren, Jiantin Du, Feng Hua, Yongzeng Yang, Lei Han (2016). Analysis of different atmospheric physical parameterizations in COAWST modeling system for the Tropical Storm Nock-ten application. Natural Hazards. 1-18, 10.1007/s11069-016-2225-0. http://www.tandfonline.com/doi/abs/10.1080/03091929.2014.944909

Carniel, S., Benetazzo, A., Bonaldo, D., Falcieri, F.M., Miglietta, M.M., Ricchi, A., and Sclavo, M. (2016). Scratching beneath the surface while coupling atmosphere, ocean and waves: Analysis of a dense water formation event. Ocean Modeling, 101, 101-112.

Ricchi, A., Miglietta, M., Falco, P., Benetazzo, A., Bonaldo, D., Bergamasco, A., Sclavo, M., Carniel, S. (2016). On the use of a coupled ocean–atmosphere-wave model during an extreme Cold Air Outbreak over the Adriatic Sea. Atmospheric Research. 172. 10.1016/j.atmosres.2015.12.023.

Beudin, A., Kalra, T. S., Ganju, N. K., and Warner, J.C. (2016). Development of a coupled wave-flow-vegetation interaction module. Computers and Geosciences, http://dx.doi.org/10.1016/j.cageo.2016.12.010.

Warner, J.C. (2016). “Advanced Model Training for Predicting Coastal Storm Impacts.” http://soundwaves.usgs.gov/2016/09/meetings.html

Bruneau, N., and Toumi, R. (2016). A fully-coupled atmosphere-ocean-wave model of the Caspian Sea. Ocean Modeling, 107, 97-111.

Feddersen, F., M. Olabarrieta, R. T. Guza, D. Winters, B. Raubenheimer, and S. Elgar (2016), Observations and modeling of a tidal inlet dye tracer plume, J. Geophys. Res. Oceans, 121, 7819–7844, doi:10.1002/2016JC011922.

Safak, I., List, J.H., and Warner, J.C. (2016). Barrier island breach evolution: Alongshore transport and bay-ocean pressure gradient interactions. J. Geophys. Res. Oceans, 121,doi:10.1002/2016JC012029.

Mooney, P.A., Gill, D.O., Mulligan, F.J. and Bruyère, C.L. (2016), Hurricane simulation using different representations of atmosphere–ocean interaction: the case of Irene (2011). Atmos. Sci. Lett., 17: 415-421. doi:10.1002/asl.673

Rogers, J. S., S. G. Monismith, D. A. Koweek, and R. B. Dunbar (2016), Wave dynamics of a Pacific Atoll with high frictional effects, J. Geophys. Res. Oceans, 121, 350–367. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015JC011170

Safak, I., List, J.H., Warner, J.C., and Kumar, N. (2017.) Observations and 3D hydrodynamics-based modeling of decadal-scale shoreline change along the Outer Banks, North Carolina, Coastal Engineering, 120, 78-92.

Warner, J.C., Schwab, W.C., List, J.H., Safak, I., Liste, M., and Baldwin, W. (2017). Inner-shelf ocean dynamics and seafloor morphologic changes during Hurricane Sandy, Continental Shelf Research, 138, 1-18.

Beudin, A., Ganju, N. K., Defne, Z. and Aretxabaleta, A. L. (2017), Physical response of a back-barrier estuary to a post-tropical cyclone. J. Geophys. Res. Oceans. doi:10.1002/2016JC012344

Akan, Ç., S. Moghimi, H. T. Özkan-Haller, J. Osborne, and A. Kurapov (2017), On the dynamics of the Mouth of the Columbia River: Results from a three-dimensional fully coupled wave-current interaction model, J. Geophys. Res. Oceans, 122, 5218–5236, doi:10.1002/2016JC012307.

Beudin, A., N. K. Ganju, Z. Defne, and A. L. Aretxabaleta (2017), Physical response of a back-barrier estuary to a post-tropical cyclone, J. Geophys. Res. Oceans, 122, 5888–5904, doi:10.1002/2016JC012344.

Ricchi, A.; Miglietta, M.M.; Barbariol, F.; Benetazzo, A.; Bergamasco, A.; Bonaldo, D.; Cassardo, C.; Falcieri, F.M.; Modugno, G.; Russo, A.; Sclavo, M.; Carniel, S. Sensitivity of a Mediterranean Tropical-Like Cyclone to Different Model Configurations and Coupling Strategies. Atmosphere 2017, 8, 92.

Zhao, X. and Chan, J. C. L. (2017), Effect of the Initial Vortex Size on Intensity Change in the WRF-ROMS Coupled Model. J. Geophys. Res. Oceans. Accepted Author Manuscript. doi:10.1002/2017JC013283.

Justin S. Rogers, Stephen G. Monismith, Oliver B. Fringer, David A. Koweek, Robert B. Dunbar (2017). A coupled wave-hydrodynamic model of an atoll with high friction: Mechanisms for flow, connectivity, and ecological implications, Ocean Modelling, 110, p 66-82, https://doi.org/10.1016/j.ocemod.2016.12.012.

Kukulka, T., Jenkins, R. L., Kirby, J. T., Shi, F., & Scarborough, R. W. (2017). Surface wave dynamics in Delaware Bay and its adjacent coastal shelf. Journal of Geophysical Research: Oceans, 122, 8683–8706. https://doi.org/10.1002/2017JC013370.

Kalra, T.S., Aretxabaleta, A., Seshadri, P., Ganju, N.K. and Beudin, A., 2017. Sensitivity analysis of a coupled hydrodynamic-vegetation model using the effectively subsampled quadratures method (ESQM v5. 2). Geoscientific Model Development, 10(12), pp.4511-4523.

Ganju, N.K., Suttles, S.E., Beudin, A., Nowacki, D.J., Miselis, J.L. and Andrews, B.D., 2017. Quantification of storm-induced bathymetric change in a back-barrier estuary. Estuaries and Coasts, 40(1), pp.22-36.

Safak, I., List, J. H., Warner, J. C., & Schwab, W. C. (2017). Persistent shoreline shape induced from offshore geologic framework: Effects of shoreface connected ridges. Journal of Geophysical Research: Oceans, 122, 8721–8738. https://doi.org/10.1002/2017JC012808.

Wandres, M., Wijeratne, E. M. S., Cosoli, S., & Pattiaratchi, C. (2017). The effect of the Leeuwin Current on offshore surface gravity waves in southwest western Australia. Journal of Geophysical Research: Oceans, 122, 9047–9067. https://doi.org/10.1002/2017JC013006.

Du, J., Bolaños, R., and Guo Larsén, X.. (2017), The use of a wave boundary layer model in SWAN, J. Geophys. Res. Oceans, 122, 42– 62, doi:10.1002/2016JC012104](https://doi.org/10.1002/2016JC012104.

Osipov, S., & Stenchikov, G. (2017). Regional effects of the Mount Pinatubo eruption on the Middle East and the Red Sea. Journal of Geophysical Research: Oceans, 122, 8894–8912. https://doi.org/10.1002/2017JC013182

Osipov, S., & Stenchikov, G. (2018). Simulating the regional impact of dust on the Middle East climate and the Red Sea. Journal of Geophysical Research: Oceans, 123, 1032–1047. https://doi.org/10.1002/2017JC013335

Çiğdem Akan, James C. McWilliams, Saeed Moghimi, H. Tuba Özkan-Haller. (2018) Frontal dynamics at the edge of the Columbia River plume, Ocean Modelling, Volume 122, pp 1-12, ISSN 1463-5003, https://doi.org/10.1016/j.ocemod.2017.12.001.

Prakash K.R., Vimlesh Pant, Upper oceanic response to tropical cyclone Phailin in the Bay of Bengal using a coupled atmosphere-ocean model, Ocean Dynamics, 67, 51-64, doi:10.1007/s10236-016-1020-5, 2017.

J.M.R. Alves, A. Peliz, R.M.A. Caldeira, P.M.A. Miranda. (2018). Atmosphere-ocean feedbacks in a coastal upwelling system, Ocean Modelling, 123, pp 55-65, https://doi.org/10.1016/j.ocemod.2018.01.004.

Zhengchen Zang, Z. George Xue, Shaowu Bao, Qin Chen, Nan D. Walker, Alaric S. Haag, Qian Ge, Zhigang Yao, (2018). Numerical study of sediment dynamics during hurricane Gustav, Ocean Modelling, Volume 126, p 29-42. https://doi.org/10.1016/j.ocemod.2018.04.002.

Dufois, F., Lowe, R., Rayson, M., & Branson, P. (2018). A numerical study of tropical cyclone‐induced sediment dynamics on the Australian North West Shelf. Journal of Geophysical Research: Oceans, 123. https://doi.org/10.1029/2018JC013939.

Wenping Gong, Zhongyuan Lin, Yunzhen Chen, Zhaoyun Chen, and Heng Zhang, (2018). Effect of winds and waves on salt intrusion in the Pearl River estuary, Ocean Science, 14, 139-159.

Torres‐Garcia, L. M., Dalyander, P. S., Long, J. W., Zawada, D. G., Yates, K. K., Moore, C., & Olabarrieta, M. (2018). Hydrodynamics and sediment mobility processes over a degraded senile coral reef. Journal of Geophysical Research: Oceans, 123. https://doi.org/10.1029/2018JC013892

Gong, Wenping & Chen, Yunzhen & Zhang, Heng & Chen, Zhaoyun. (2018). Effects of Wave–Current Interaction on Salt Intrusion During a Typhoon Event in a Highly Stratified Estuary. Estuaries and Coasts. 1-20. 10.1007/s12237-018-0393-8.

Prakash K.R.,Tanuja Nigam, Vimlesh Pant, Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere-ocean-wave model, Ocean Science, 14, 259-272, https://doi.org/10.5194/os-14-259-2018, 2018.

Pareja-Roman, L. F., Chant, R. J., & Ralston, D. K. (2019). Effects of locally generated wind waves on the momentum budget and subtidal exchange in a coastal plain estuary. Journal of Geophysical Research: Oceans, 124, 1005–1028. https://doi.org/10.1029/2018JC014585

Lewis, M.J., Palmer, T., Hashemi, R. et al. (2019). Wave-tide interaction modulates nearshore wave height. Ocean Dynamics, 69: 367. https://doi.org/10.1007/s10236-018-01245-z

P.A. Mooney, F.J. Mulligan, C.L. Bruyère, C.L. Parker, D.O. Gill (2019) Investigating the performance of coupled WRF-ROMS simulations of Hurricane Irene (2011) in a regional climate modeling framework, Atmospheric Research, 215, 57-74. https://doi.org/10.1016/j.atmosres.2018.08.017.

Shi, Q.; Bourassa, M.A. Coupling Ocean Currents and Waves with Wind Stress over the Gulf Stream. Remote Sens. 2019, 11, 1476. https://doi.org/10.3390/rs11121476

Dmitry Dukhovskoy, 2019, oil spill simulations. https://www.youtube.com/watch?v=XWfP9IxUawk

Tarpley, D.R.N., Harris, C., Friedrichs, C., and Sherwood, C.R. (2019). Tidal Variation in Cohesive Sediment Distribution and Sensitivity to Flocculation and Bed Consolidation in An Idealized, Partially Mixed Estuary, J. Mar. Sci. Eng. 2019, 7(10), 334; https://doi.org/10.3390/jmse7100334.

Kalra, T., Li, X., Warner, J.C., Geyer, W.R., and Wu, H., 2019, Comparison of physical to numerical mixing with different tracer advection schemes in estuarine environments, Journal of Marine Science and Engineering, 7, 338.

Wang, A., Ralston, D., Bi, N., Cheng, Z., Wu, X., and Wang, H., 2019, Seasonal variation in sediment transport and deposition on a muddy clinoform in the Yellow Sea, Continental Shelf Research 179, 37-51.

Jia, Y., Whitney, M.M., 2019, Summertime Connecticut River Water Pathways and Wind Impacts, Journal of Geophysical Research: Oceans, 124, 1897-1914

Prakash K. R., Vimlesh Pant, Tanuja Nigam, Effects of the sea surface roughness and sea-spray induced flux parameterization on the simulations of a tropical cyclone, Journal of Geophysical Research: Atmospheres, 124, DOI: 10.1029/2018JD029760, 2019.

Defne, Z., Ganju, N.K. and Moriarty, J.M., 2019. Hydrodynamic and morphologic response of a back-barrier estuary to an extratropical storm. Journal of geophysical research: Oceans, 124(11), pp.7700-7717.

Larsén, XG, Du, J, Bolaños, R, et al. (2019). Estimation of offshore extreme wind from wind-wave coupled modeling. Wind Energy. 22: 1043– 1057. https://doi.org/10.1002/we.2339

Donatelli, C., Ganju, N.K., Kalra, T.S., Fagherazzi, S. and Leonardi, N., 2019. Changes in hydrodynamics and wave energy as a result of seagrass decline along the shoreline of a microtidal back-barrier estuary. Advances in Water Resources, 128, pp.183-192.

Kalra, T.S., Ganju, N.K. and Testa, J.M., 2020. Development of a submerged aquatic vegetation growth model in the Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST v3. 4) model. Geoscientific Model Development, 13(11), pp.5211-5228.

Scalpone, C.R., Jarvis, J.C., Vasslides, J.M., Testa, J.M. and Ganju, N.K., 2020. Simulated estuary-wide response of seagrass (Zostera marina) to future scenarios of temperature and sea level. Frontiers in Marine Science, 7, p.539946.

Donatelli, C., Zhang, X., Ganju, N.K., Aretxabaleta, A.L., Fagherazzi, S. and Leonardi, N., 2020. A nonlinear relationship between marsh size and sediment trapping capacity compromises salt marshes’ stability. Geology, 48(10), pp.966-970.

Chen, L., Gong, W., Scully, M. E., Zhang, H., Cheng, W., & Li, W. (2020). Axial wind effects on stratification and longitudinal sediment transport in a convergent estuary during wet season. Journal of Geophysical Research: Oceans, 125, e2019JC015254. https://doi.org/10.1029/2019JC015254

Anandh, T.S., Das, B.K., Kuttippurath, J. et al. A coupled model analyses on the interaction between oceanic eddies and tropical cyclones over the Bay of Bengal. Ocean Dynamics 70, 327–337 (2020). https://doi.org/10.1007/s10236-019-01330-x

Rajesh Kumar R, Sandeepan BS & Holland, D.M. Impact of different sea surface roughness on surface gravity waves using a coupled atmosphere–wave model: a case of Hurricane Isaac (2012). Ocean Dynamics 70, 421–433 (2020). https://doi.org/10.1007/s10236-019-01327-6

Zhao, N., & Nasuno, T.( 2020). How does the air‐sea coupling frequency affect convection during the MJO passage? Journal of Advances in Modeling Earth Systems, 12, e2020MS002058. https://doi.org/10.1029/2020MS002058.

Pant Vimlesh , K. R. Prakash, Response of air-sea fluxes and oceanic features to the coupling of ocean-atmosphere-wave during the passage of a tropical cyclone, Pure and Applied Geophysics, https://doi.org/10.1007/s00024-020-02441-z, 2020.

Prakash K. R., Vimlesh Pant, On the wave-current interaction during the passage of a tropical cyclone in the Bay of Bengal, Deep-Sea Research Part-II, 172, https://doi.org/10.1016/j.dsr2.2019.104658, 2020.

Samelson, R. M., L. W. O’Neill, D. B. Chelton, E. D. Skyllingstad, P. L. Barbour, and S. M. Durski, 2020: Surface Stress and Atmospheric Boundary Layer Response to Mesoscale SST Structure in Coupled Simulations of the Northern California Current System. Mon. Wea. Rev., 148, 259–287, https://doi.org/10.1175/MWR-D-19-0200.1.

Alves JMR, Caldeira R, Miranda (2020) Dynamics and oceanic response of the Madeira tip-jets Quarterly Journal of the Royal Meteorological Society DOI: 10.1002/qj.3825

Liu, X., Duan,Y., and Huo, Z. (2020). Development of a coupled atmosphere–ocean typhoon regional assimilation and prediction system for operational typhoon forecasting by the Chinese Academy of Meteorological Sciences—part I: experiments of Western North Pacific typhoons in 2016. Ocean Dynamics (2020) 70:1225–1238. https://doi.org/10.1007/s10236-020-01394-0

Baisya, H., Pattnaik, S., Chakraborty, T. (2020) A coupled modeling approach to understand ocean coupling and energetics of tropical cyclones in the Bay of Bengal basin. Atmospheric Research, 246:105092. DOI: https://doi.org/10.1016/j.atmosres.2020.105092

Chen, L., Gong, W., Zhang, H., Zhu, L., & Cheng, W. (2020). Lateral circulation and associated sediment transport in a convergent estuary. Journal of Geophysical Research: Oceans, 125, e2019JC015926. https://doi.org/10.1029/2019JC015926

Alimohammadi, M., Malakooti, H. & Rahbani, M. Comparison of momentum roughness lengths of the WRF-SWAN online coupling and WRF model in simulation of tropical cyclone Gonu. Ocean Dynamics 70, 1531–1545 (2020). https://doi.org/10.1007/s10236-020-01417-w

Porchetta, S., Temel,O.,Warner,. J.C., Muñoz‐Esparza, D., Monbaliu, J., van Beeck, J., van Lipzig, N. (2020). Evaluation of a roughness length parametrization accounting for wind–wave alignment in a coupled atmosphere–wave model. Q J R Meteorol Soc. 2020; 1– 22. https://doi.org/10.1002/qj.3948

Guoqiang,L., Kumar, N., Harcourt, R., and Perrie, W. (2020). Bulk, Spectral and Deep-Water Approximations for Stokes Drift: Implications for Coupled Ocean Circulation and Surface Wave Models, Journal Earth and Space Science, https://doi.org/10.1002/essoar.10503334.1

Azevedo, C. C., Camargo, C. M. L., Alves, J., & Caldeira, R. M. A. (2020). Convection and heat transfer in island (warm) wakes, Journal of Physical Oceanography, . Retrieved Feb 9, 2021, from https://journals.ametsoc.org/view/journals/phoc/aop/JPO-D-20-0103.1/JPO-D-20-0103.1.xml

Dukhovskoy Dmitry S., Morey Steven L., Chassignet Eric P., Chen Xu, Coles Victoria J., Cui Linlin, Harris Courtney K., Hetland Robert, Hsu Tian-Jian, Manning Andrew J., Stukel Michael, Thyng Kristen, Wang Jiaze (2021). Development of the CSOMIO Coupled Ocean-Oil-Sediment-Biology Model. Frontiers in Marine Science, 8, https://www.frontiersin.org/article/10.3389/fmars.2021.629299.

Chant, R.J., Ralston, D.K., Ganju, N.K., Pianca, C., Simonson, A.E. and Cartwright, R.A., 2021. Sediment budget estimates for a highly impacted embayment with extensive wetland loss. Estuaries and Coasts, 44(3), pp.608-626.

Grimes, D., & Feddersen, F. (2021). The self-similar stratified inner-shelf response to transient rip-current-induced mixing. Journal of Fluid Mechanics, 915, A82. doi:10.1017/jfm.2021.140

Feddersen, F., Boehm, A. B., Giddings, S. N., Wu, X., & Liden, D. (2021). Modeling untreated wastewater evolution and swimmer illness for four wastewater infrastructure scenarios in the San Diego-Tijuana (US/MX) border region. GeoHealth, 5, e2021GH000490. https://doi.org/10.1029/2021GH000490

Biddle, M.M., Palinkas, C.M. & Sanford, L.P. Modeling Impacts of Submersed Aquatic Vegetation on Sediment Dynamics Under Storm Conditions in Upper Chesapeake Bay. Estuaries and Coasts (2021). https://doi.org/10.1007/s12237-021-00941-2

Pranić, P., Denamiel, C., and Vilibić, I.: Performance of the Adriatic Sea and Coast (AdriSC) climate component – a COAWST V3.3-based one-way coupled atmosphere–ocean modelling suite: ocean results, Geosci. Model Dev., 14, 5927–5955, https://doi.org/10.5194/gmd-14-5927-2021, 2021.

Ardağ, D., & Wilson, G. (2021). Sensitivity of Surface Currents to Bathymetry in a Partially-Mixed Estuary with Applications to Inverse Modeling, Journal of Atmospheric and Oceanic Technology (published online ahead of print 2021). Retrieved Dec 29, 2021, from https://journals.ametsoc.org/view/journals/atot/aop/JTECH-D-21-0089.1/JTECH-D-21-0089.1.xml

Catherine Drinkorn, Jan Saynisch-Wagner, Gabriele Uenzelmann-Neben, Maik Thomas, Decadal climate sensitivity of contouritic sedimentation in a dynamically coupled ice-ocean-sediment model of the North Atlantic, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 572, 2021, 110391, ISSN 0031-0182, https://doi.org/10.1016/j.palaeo.2021.110391.

Dongxiao Yin, Z. George Xue, Warner John, Daoyang Bao, Yongjie Huang; Wei Yu. (2021). Hydrometeorology and Hydrology of Flooding in Cape Fear River Basin During Hurricane Florence in 2018. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2021.127139.

Pezzi, L.P., Quadro, M.F.L., Lorenzzetti, J.A. et al. The effect of Oceanic South Atlantic Convergence Zone episodes on regional SST anomalies: the roles of heat fluxes and upper-ocean dynamics. Clim Dyn (2022). https://doi.org/10.1007/s00382-022-06195-3

Xu, Y., Kalra, T. S., Ganju, N. K., & Fagherazzi, S. (2022). Modeling the dynamics of salt marsh development in coastal land reclamation. Geophysical Research Letters, 49, e2021GL095559. https://doi.org/10.1029/2021GL095559

Hegermiller, C.A., Warner, J.C., Olabarrieta, M., Sherwood, C.R., and Kalra, T. (2022). Barrier island breach dynamics during Hurricanes Sandy and Matthew Journal of Geophysical Research - Earth Surface, https://doi.org/10.1029/2021JF006307.

Kiran, P.V., Balaji, C. The future projection of cyclones in Bay of Bengal: a study using coupled ocean atmosphere model. Ocean Dynamics 72, 641–660 (2022). https://doi.org/10.1007/s10236-022-01522-y

Xu, X., Voermans, J. J., Moon, I.-J., Liu, Q., Guan, C., & Babanin, A. V. (2022). Sea spray impacts on Tropical Cyclone Olwyn using a coupled atmosphere-ocean-wave model. Journal of Geophysical Research: Oceans, 127, e2022JC018557. https://doi.org/10.1029/2022JC018557

Calvino, C., Dabrowski, T. & Dias, F. A study of the sea level and current effects on the sea state in Galway Bay, using the numerical model COAWST. Ocean Dynamics 72, 761–774 (2022). https://doi.org/10.1007/s10236-022-01532-w.

Fischereit J, Larsén XG and Hahmann AN (2022) Climatic Impacts of Wind-Wave-Wake Interactions in Offshore Wind Farms. Front. Energy Res. 10:881459. doi: 10.3389/fenrg.2022.881459](https://doi.org/10.3389/fenrg.2022.881459.

Chakraborty, T., Pattnaik, S., Baisya, H., Vishwakarma, V. (2022) Investigation of Ocean Sub-Surface Processes in Tropical Cyclone Phailin Using a Coupled Modeling Framework: Sensitivity to Ocean Conditions. Oceans, 3(3):364-388. DOI: https://doi.org/10.3390/oceans3030025

Lin, S.; Sheng, J. (2023). Interactions between Surface Waves, Tides, and Storm-Induced Currents over Shelf Waters of the Northwest Atlantic. J. Mar. Sci. Eng. 2023, 11, 555. https://doi.org/10.3390/jmse11030555

Chakraborty, T., Pattnaik, S. & Joseph, S. Influence of tropical cyclone Jawad on the surface and sub-surface circulation in the Bay of Bengal: ocean–atmosphere feedback. Ocean Dynamics 73, 619–637 (2023). https://doi.org/10.1007/s10236-023-01572-w

Chakraborty, T., Pattnaik, S., Baisya, H. (2023) Investigating the precipitation features of monsoon deep depressions over the Bay of Bengal using high-resolution stand-alone and coupled simulations. Quarterly Journal of the Royal Meteorological Society, 149(753):1213-1235. DOI: https://doi.org/10.1002/qj.4449

Yoshikai, M., Nakamura, T., Herrera, E. C., Suwa, R., Rollon, R., Ray, R., Furukawa, K., Nadaoka, K. (2023)., Representing the impact of Rhizophora mangroves on flow in a hydrodynamic model (COAWST_rh v1.0): the importance of three-dimensional root system structures. Geosci. Model Dev., V 16, IS 20, 5847-5863, https://gmd.copernicus.org/articles/16/5847/2023/gmd-16-5847-2023.pdf, 10.5194/gmd-16-5847-2023.

Forecast systems: Hydro and Agro Informatics Institute http://www.thaiwater.net/v3/wrfroms/rain_forecast_pre/tab1/image1

USGS Woods Hole http://woodshole.er.usgs.gov/project-pages/cccp/public/COAWST.htm

North Carolina State University http://omgsrv1.meas.ncsu.edu:8080/CNAPS/atm.jsp

Madeira Island Oceanic Observatory forecasting https://oom.arditi.pt/mission072018/

Acknowledgements We thank all the modeling and tool systems for open access to their codes, and to the Integration and Application Network (ian.umces.edu/symbols), University of Maryland Center for Environmental Science, for the courtesy use of their symbols and diagrams.

Clone this wiki locally