Skip to content

Latest commit

 

History

History
2351 lines (1883 loc) · 110 KB

writing-tests.adoc

File metadata and controls

2351 lines (1883 loc) · 110 KB

Writing Tests

The following example provides a glimpse at the minimum requirements for writing a test in JUnit Jupiter. Subsequent sections of this chapter will provide further details on all available features.

A first test case
link:{testDir}/example/MyFirstJUnitJupiterTests.java[role=include]

Annotations

JUnit Jupiter supports the following annotations for configuring tests and extending the framework.

Unless otherwise stated, all core annotations are located in the {api-package} package in the junit-jupiter-api module.

Annotation Description

@Test

Denotes that a method is a test method. Unlike JUnit 4’s @Test annotation, this annotation does not declare any attributes, since test extensions in JUnit Jupiter operate based on their own dedicated annotations. Such methods are inherited unless they are overridden.

@ParameterizedTest

Denotes that a method is a parameterized test. Such methods are inherited unless they are overridden.

@RepeatedTest

Denotes that a method is a test template for a repeated test. Such methods are inherited unless they are overridden.

@TestFactory

Denotes that a method is a test factory for dynamic tests. Such methods are inherited unless they are overridden.

@TestTemplate

Denotes that a method is a template for test cases designed to be invoked multiple times depending on the number of invocation contexts returned by the registered providers. Such methods are inherited unless they are overridden.

@TestClassOrder

Used to configure the test class execution order for @Nested test classes in the annotated test class. Such annotations are inherited.

@TestMethodOrder

Used to configure the test method execution order for the annotated test class; similar to JUnit 4’s @FixMethodOrder. Such annotations are inherited.

@TestInstance

Used to configure the test instance lifecycle for the annotated test class. Such annotations are inherited.

@DisplayName

Declares a custom display name for the test class or test method. Such annotations are not inherited.

@DisplayNameGeneration

Declares a custom display name generator for the test class. Such annotations are inherited.

@BeforeEach

Denotes that the annotated method should be executed before each @Test, @RepeatedTest, @ParameterizedTest, or @TestFactory method in the current class; analogous to JUnit 4’s @Before. Such methods are inherited unless they are overridden.

@AfterEach

Denotes that the annotated method should be executed after each @Test, @RepeatedTest, @ParameterizedTest, or @TestFactory method in the current class; analogous to JUnit 4’s @After. Such methods are inherited unless they are overridden.

@BeforeAll

Denotes that the annotated method should be executed before all @Test, @RepeatedTest, @ParameterizedTest, and @TestFactory methods in the current class; analogous to JUnit 4’s @BeforeClass. Such methods are inherited (unless they are hidden or overridden) and must be static (unless the "per-class" test instance lifecycle is used).

@AfterAll

Denotes that the annotated method should be executed after all @Test, @RepeatedTest, @ParameterizedTest, and @TestFactory methods in the current class; analogous to JUnit 4’s @AfterClass. Such methods are inherited (unless they are hidden or overridden) and must be static (unless the "per-class" test instance lifecycle is used).

@Nested

Denotes that the annotated class is a non-static nested test class. @BeforeAll and @AfterAll methods cannot be used directly in a @Nested test class unless the "per-class" test instance lifecycle is used. Such annotations are not inherited.

@Tag

Used to declare tags for filtering tests, either at the class or method level; analogous to test groups in TestNG or Categories in JUnit 4. Such annotations are inherited at the class level but not at the method level.

@Disabled

Used to disable a test class or test method; analogous to JUnit 4’s @Ignore. Such annotations are not inherited.

@Timeout

Used to fail a test, test factory, test template, or lifecycle method if its execution exceeds a given duration. Such annotations are inherited.

@ExtendWith

Used to register extensions declaratively. Such annotations are inherited.

@RegisterExtension

Used to register extensions programmatically via fields. Such fields are inherited unless they are shadowed.

@TempDir

Used to supply a temporary directory via field injection or parameter injection in a lifecycle method or test method; located in the org.junit.jupiter.api.io package.

Warning
Some annotations may currently be experimental. Consult the table in [api-evolution-experimental-apis] for details.

Meta-Annotations and Composed Annotations

JUnit Jupiter annotations can be used as meta-annotations. That means that you can define your own composed annotation that will automatically inherit the semantics of its meta-annotations.

For example, instead of copying and pasting @Tag("fast") throughout your code base (see Tagging and Filtering), you can create a custom composed annotation named @Fast as follows. @Fast can then be used as a drop-in replacement for @Tag("fast").

link:{testDir}/example/Fast.java[role=include]

The following @Test method demonstrates usage of the @Fast annotation.

@Fast
@Test
void myFastTest() {
    // ...
}

You can even take that one step further by introducing a custom @FastTest annotation that can be used as a drop-in replacement for @Tag("fast") and @Test.

link:{testDir}/example/FastTest.java[role=include]

JUnit automatically recognizes the following as a @Test method that is tagged with "fast".

@FastTest
void myFastTest() {
    // ...
}

Test Classes and Methods

Test Class: any top-level class, static member class, or @Nested class that contains at least one test method.

Test classes must not be abstract and must have a single constructor.

Test Method: any instance method that is directly annotated or meta-annotated with @Test, @RepeatedTest, @ParameterizedTest, @TestFactory, or @TestTemplate.

Lifecycle Method: any method that is directly annotated or meta-annotated with @BeforeAll, @AfterAll, @BeforeEach, or @AfterEach.

Test methods and lifecycle methods may be declared locally within the current test class, inherited from superclasses, or inherited from interfaces (see Test Interfaces and Default Methods). In addition, test methods and lifecycle methods must not be abstract and must not return a value (except @TestFactory methods which are required to return a value).

Note
Class and method visibility

Test classes, test methods, and lifecycle methods are not required to be public, but they must not be private.

It is generally recommended to omit the public modifier for test classes, test methods, and lifecycle methods unless there is a technical reason for doing so – for example, when a test class is extended by a test class in another package. Another technical reason for making classes and methods public is to simplify testing on the module path when using the Java Module System.

The following test class demonstrates the use of @Test methods and all supported lifecycle methods. For further information on runtime semantics, see Test Execution Order and [extensions-execution-order-wrapping-behavior].

A standard test class
link:{testDir}/example/StandardTests.java[role=include]

Display Names

Test classes and test methods can declare custom display names via @DisplayName — with spaces, special characters, and even emojis — that will be displayed in test reports and by test runners and IDEs.

link:{testDir}/example/DisplayNameDemo.java[role=include]

Display Name Generators

JUnit Jupiter supports custom display name generators that can be configured via the @DisplayNameGeneration annotation. Values provided via @DisplayName annotations always take precedence over display names generated by a DisplayNameGenerator.

Generators can be created by implementing DisplayNameGenerator. Here are some default ones available in Jupiter:

DisplayNameGenerator Behavior

Standard

Matches the standard display name generation behavior in place since JUnit Jupiter 5.0 was released.

Simple

Removes trailing parentheses for methods with no parameters.

ReplaceUnderscores

Replaces underscores with spaces.

IndicativeSentences

Generates complete sentences by concatenating the names of the test and the enclosing classes.

Note that for IndicativeSentences, you can customize the separator and the underlying generator by using @IndicativeSentencesGeneration as shown in the following example.

link:{testDir}/example/DisplayNameGeneratorDemo.java[role=include]
+-- DisplayNameGeneratorDemo [OK]
  +-- A year is not supported [OK]
  | +-- A negative value for year is not supported by the leap year computation. [OK]
  | | +-- For example, year -1 is not supported. [OK]
  | | '-- For example, year -4 is not supported. [OK]
  | '-- if it is zero() [OK]
  '-- A year is a leap year [OK]
    +-- A year is a leap year -> if it is divisible by 4 but not by 100. [OK]
    '-- A year is a leap year -> if it is one of the following years. [OK]
      +-- Year 2016 is a leap year. [OK]
      +-- Year 2020 is a leap year. [OK]
      '-- Year 2048 is a leap year. [OK]

Setting the Default Display Name Generator

You can use the junit.jupiter.displayname.generator.default configuration parameter to specify the fully qualified class name of the DisplayNameGenerator you would like to use by default. Just like for display name generators configured via the @DisplayNameGeneration annotation, the supplied class has to implement the DisplayNameGenerator interface. The default display name generator will be used for all tests unless the @DisplayNameGeneration annotation is present on an enclosing test class or test interface. Values provided via @DisplayName annotations always take precedence over display names generated by a DisplayNameGenerator.

For example, to use the ReplaceUnderscores display name generator by default, you should set the configuration parameter to the corresponding fully qualified class name (e.g., in src/test/resources/junit-platform.properties):

junit.jupiter.displayname.generator.default = \
    org.junit.jupiter.api.DisplayNameGenerator$ReplaceUnderscores

Similarly, you can specify the fully qualified name of any custom class that implements DisplayNameGenerator.

In summary, the display name for a test class or method is determined according to the following precedence rules:

  1. value of the @DisplayName annotation, if present

  2. by calling the DisplayNameGenerator specified in the @DisplayNameGeneration annotation, if present

  3. by calling the default DisplayNameGenerator configured via the configuration parameter, if present

  4. by calling org.junit.jupiter.api.DisplayNameGenerator.Standard

Assertions

JUnit Jupiter comes with many of the assertion methods that JUnit 4 has and adds a few that lend themselves well to being used with Java 8 lambdas. All JUnit Jupiter assertions are static methods in the {Assertions} class.

link:{testDir}/example/AssertionsDemo.java[role=include]
Warning
Preemptive Timeouts with assertTimeoutPreemptively()

Contrary to declarative timeouts, the various assertTimeoutPreemptively() methods in the Assertions class execute the provided executable or supplier in a different thread than that of the calling code. This behavior can lead to undesirable side effects if the code that is executed within the executable or supplier relies on java.lang.ThreadLocal storage.

One common example of this is the transactional testing support in the Spring Framework. Specifically, Spring’s testing support binds transaction state to the current thread (via a ThreadLocal) before a test method is invoked. Consequently, if an executable or supplier provided to assertTimeoutPreemptively() invokes Spring-managed components that participate in transactions, any actions taken by those components will not be rolled back with the test-managed transaction. On the contrary, such actions will be committed to the persistent store (e.g., relational database) even though the test-managed transaction is rolled back.

Similar side effects may be encountered with other frameworks that rely on ThreadLocal storage.

Kotlin Assertion Support

JUnit Jupiter also comes with a few assertion methods that lend themselves well to being used in Kotlin. All JUnit Jupiter Kotlin assertions are top-level functions in the org.junit.jupiter.api package.

link:{kotlinTestDir}/example/KotlinAssertionsDemo.kt[role=include]

Third-party Assertion Libraries

Even though the assertion facilities provided by JUnit Jupiter are sufficient for many testing scenarios, there are times when more power and additional functionality such as matchers are desired or required. In such cases, the JUnit team recommends the use of third-party assertion libraries such as {AssertJ}, {Hamcrest}, {Truth}, etc. Developers are therefore free to use the assertion library of their choice.

For example, the combination of matchers and a fluent API can be used to make assertions more descriptive and readable. However, JUnit Jupiter’s {Assertions} class does not provide an assertThat() method like the one found in JUnit 4’s org.junit.Assert class which accepts a Hamcrest Matcher. Instead, developers are encouraged to use the built-in support for matchers provided by third-party assertion libraries.

The following example demonstrates how to use the assertThat() support from Hamcrest in a JUnit Jupiter test. As long as the Hamcrest library has been added to the classpath, you can statically import methods such as assertThat(), is(), and equalTo() and then use them in tests like in the assertWithHamcrestMatcher() method below.

link:{testDir}/example/HamcrestAssertionsDemo.java[role=include]

Naturally, legacy tests based on the JUnit 4 programming model can continue using org.junit.Assert#assertThat.

Assumptions

JUnit Jupiter comes with a subset of the assumption methods that JUnit 4 provides and adds a few that lend themselves well to being used with Java 8 lambda expressions and method references. All JUnit Jupiter assumptions are static methods in the {Assumptions} class.

link:{testDir}/example/AssumptionsDemo.java[role=include]
Note
As of JUnit Jupiter 5.4, it is also possible to use methods from JUnit 4’s org.junit.Assume class for assumptions. Specifically, JUnit Jupiter supports JUnit 4’s AssumptionViolatedException to signal that a test should be aborted instead of marked as a failure.

Disabling Tests

Entire test classes or individual test methods may be disabled via the {Disabled} annotation, via one of the annotations discussed in Conditional Test Execution, or via a custom ExecutionCondition.

Here’s a @Disabled test class.

link:{testDir}/example/DisabledClassDemo.java[role=include]

And here’s a test class that contains a @Disabled test method.

link:{testDir}/example/DisabledTestsDemo.java[role=include]
Note
@Disabled may be declared without providing a reason; however, the JUnit team recommends that developers provide a short explanation for why a test class or test method has been disabled. Consequently, the above examples both show the use of a reason — for example, @Disabled("Disabled until bug #42 has been resolved"). Some development teams even require the presence of issue tracking numbers in the reason for automated traceability, etc.

Conditional Test Execution

The ExecutionCondition extension API in JUnit Jupiter allows developers to either enable or disable a container or test based on certain conditions programmatically. The simplest example of such a condition is the built-in {DisabledCondition} which supports the {Disabled} annotation (see Disabling Tests). In addition to @Disabled, JUnit Jupiter also supports several other annotation-based conditions in the org.junit.jupiter.api.condition package that allow developers to enable or disable containers and tests declaratively. When multiple ExecutionCondition extensions are registered, a container or test is disabled as soon as one of the conditions returns disabled. If you wish to provide details about why they might be disabled, every annotation associated with these built-in conditions has a disabledReason attribute available for that purpose.

See ExecutionCondition and the following sections for details.

Tip
Composed Annotations

Note that any of the conditional annotations listed in the following sections may also be used as a meta-annotation in order to create a custom composed annotation. For example, the @TestOnMac annotation in the @EnabledOnOs demo shows how you can combine @Test and @EnabledOnOs in a single, reusable annotation.

Warning

Unless otherwise stated, each of the conditional annotations listed in the following sections can only be declared once on a given test interface, test class, or test method. If a conditional annotation is directly present, indirectly present, or meta-present multiple times on a given element, only the first such annotation discovered by JUnit will be used; any additional declarations will be silently ignored. Note, however, that each conditional annotation may be used in conjunction with other conditional annotations in the org.junit.jupiter.api.condition package.

Operating System Conditions

A container or test may be enabled or disabled on a particular operating system via the {EnabledOnOs} and {DisabledOnOs} annotations.

link:{testDir}/example/ConditionalTestExecutionDemo.java[role=include]

Java Runtime Environment Conditions

A container or test may be enabled or disabled on particular versions of the Java Runtime Environment (JRE) via the {EnabledOnJre} and {DisabledOnJre} annotations or on a particular range of versions of the JRE via the {EnabledForJreRange} and {DisabledForJreRange} annotations. The range defaults to {JRE}.JAVA_8 as the lower border (min) and {JRE}.OTHER as the higher border (max), which allows usage of half open ranges.

link:{testDir}/example/ConditionalTestExecutionDemo.java[role=include]

System Property Conditions

A container or test may be enabled or disabled based on the value of the named JVM system property via the {EnabledIfSystemProperty} and {DisabledIfSystemProperty} annotations. The value supplied via the matches attribute will be interpreted as a regular expression.

link:{testDir}/example/ConditionalTestExecutionDemo.java[role=include]
Tip

As of JUnit Jupiter 5.6, {EnabledIfSystemProperty} and {DisabledIfSystemProperty} are repeatable annotations. Consequently, these annotations may be declared multiple times on a test interface, test class, or test method. Specifically, these annotations will be found if they are directly present, indirectly present, or meta-present on a given element.

Environment Variable Conditions

A container or test may be enabled or disabled based on the value of the named environment variable from the underlying operating system via the {EnabledIfEnvironmentVariable} and {DisabledIfEnvironmentVariable} annotations. The value supplied via the matches attribute will be interpreted as a regular expression.

link:{testDir}/example/ConditionalTestExecutionDemo.java[role=include]
Tip

As of JUnit Jupiter 5.6, {EnabledIfEnvironmentVariable} and {DisabledIfEnvironmentVariable} are repeatable annotations. Consequently, these annotations may be declared multiple times on a test interface, test class, or test method. Specifically, these annotations will be found if they are directly present, indirectly present, or meta-present on a given element.

Custom Conditions

A container or test may be enabled or disabled based on the boolean return of a method via the {EnabledIf} and {DisabledIf} annotations. The method is provided to the annotation via its name. If needed, the condition method can take a single parameter of type ExtensionContext.

link:{testDir}/example/ConditionalTestExecutionDemo.java[role=include]

Alternatively, the condition method can be located outside the test class. In this case, it has to be referenced by its fully qualified name as demonstrated in the following example.

package example;

link:{testDir}/example/ExternalCustomConditionDemo.java[role=include]
Note
When {EnabledIf} or {DisabledIf} is used at class level, the condition method must always be static. Condition methods located in external classes must also be static. In any other case, you can use both static or instance methods.

Tagging and Filtering

Test classes and methods can be tagged via the @Tag annotation. Those tags can later be used to filter test discovery and execution. Please refer to the [running-tests-tags] section for more information about tag support in the JUnit Platform.

link:{testDir}/example/TaggingDemo.java[role=include]
Tip
See Meta-Annotations and Composed Annotations for examples demonstrating how to create custom annotations for tags.

Test Execution Order

By default, test classes and methods will be ordered using an algorithm that is deterministic but intentionally nonobvious. This ensures that subsequent runs of a test suite execute test classes and test methods in the same order, thereby allowing for repeatable builds.

Note
See Test Classes and Methods for a definition of test method and test class.

Method Order

Although true unit tests typically should not rely on the order in which they are executed, there are times when it is necessary to enforce a specific test method execution order — for example, when writing integration tests or functional tests where the sequence of the tests is important, especially in conjunction with @TestInstance(Lifecycle.PER_CLASS).

To control the order in which test methods are executed, annotate your test class or test interface with {TestMethodOrder} and specify the desired {MethodOrderer} implementation. You can implement your own custom MethodOrderer or use one of the following built-in MethodOrderer implementations.

  • {MethodOrderer_DisplayName}: sorts test methods alphanumerically based on their display names (see display name generation precedence rules)

  • {MethodOrderer_MethodName}: sorts test methods alphanumerically based on their names and formal parameter lists

  • {MethodOrderer_OrderAnnotation}: sorts test methods numerically based on values specified via the {Order} annotation

  • {MethodOrderer_Random}: orders test methods pseudo-randomly and supports configuration of a custom seed

  • {MethodOrderer_Alphanumeric}: sorts test methods alphanumerically based on their names and formal parameter lists; deprecated in favor of {MethodOrderer_MethodName}, to be removed in 6.0

The following example demonstrates how to guarantee that test methods are executed in the order specified via the @Order annotation.

link:{testDir}/example/OrderedTestsDemo.java[role=include]
Setting the Default Method Orderer

You can use the junit.jupiter.testmethod.order.default configuration parameter to specify the fully qualified class name of the {MethodOrderer} you would like to use by default. Just like for the orderer configured via the {TestMethodOrder} annotation, the supplied class has to implement the MethodOrderer interface. The default orderer will be used for all tests unless the @TestMethodOrder annotation is present on an enclosing test class or test interface.

For example, to use the {MethodOrderer_OrderAnnotation} method orderer by default, you should set the configuration parameter to the corresponding fully qualified class name (e.g., in src/test/resources/junit-platform.properties):

junit.jupiter.testmethod.order.default = \
    org.junit.jupiter.api.MethodOrderer$OrderAnnotation

Similarly, you can specify the fully qualified name of any custom class that implements MethodOrderer.

Class Order

Although test classes typically should not rely on the order in which they are executed, there are times when it is desirable to enforce a specific test class execution order. You may wish to execute test classes in a random order to ensure there are no accidental dependencies between test classes, or you may wish to order test classes to optimize build time as outlined in the following scenarios.

  • Run previously failing tests and faster tests first: "fail fast" mode

  • With parallel execution enabled, run longer tests first: "shortest test plan execution duration" mode

  • Various other use cases

To configure test class execution order globally for the entire test suite, use the junit.jupiter.testclass.order.default configuration parameter to specify the fully qualified class name of the {ClassOrderer} you would like to use. The supplied class must implement the ClassOrderer interface.

You can implement your own custom ClassOrderer or use one of the following built-in ClassOrderer implementations.

  • {ClassOrderer_ClassName}: sorts test classes alphanumerically based on their fully qualified class names

  • {ClassOrderer_DisplayName}: sorts test classes alphanumerically based on their display names (see display name generation precedence rules)

  • {ClassOrderer_OrderAnnotation}: sorts test classes numerically based on values specified via the {Order} annotation

  • {ClassOrderer_Random}: orders test classes pseudo-randomly and supports configuration of a custom seed

For example, for the @Order annotation to be honored on test classes, you should configure the {ClassOrderer_OrderAnnotation} class orderer using the configuration parameter with the corresponding fully qualified class name (e.g., in src/test/resources/junit-platform.properties):

junit.jupiter.testclass.order.default = \
    org.junit.jupiter.api.ClassOrderer$OrderAnnotation

The configured ClassOrderer will be applied to all top-level test classes (including static nested test classes) and @Nested test classes.

Note
Top-level test classes will be ordered relative to each other; whereas, @Nested test classes will be ordered relative to other @Nested test classes sharing the same enclosing class.

To configure test class execution order locally for @Nested test classes, declare the {TestClassOrder} annotation on the enclosing class for the @Nested test classes you want to order, and supply a class reference to the ClassOrderer implementation you would like to use directly in the @TestClassOrder annotation. The configured ClassOrderer will be applied recursively to @Nested test classes and their @Nested test classes. Note that a local @TestClassOrder declaration always overrides an inherited @TestClassOrder declaration or a ClassOrderer configured globally via the junit.jupiter.testclass.order.default configuration parameter.

The following example demonstrates how to guarantee that @Nested test classes are executed in the order specified via the @Order annotation.

link:{testDir}/example/OrderedNestedTestClassesDemo.java[role=include]

Test Instance Lifecycle

In order to allow individual test methods to be executed in isolation and to avoid unexpected side effects due to mutable test instance state, JUnit creates a new instance of each test class before executing each test method (see Test Classes and Methods). This "per-method" test instance lifecycle is the default behavior in JUnit Jupiter and is analogous to all previous versions of JUnit.

Note
Please note that the test class will still be instantiated if a given test method is disabled via a condition (e.g., @Disabled, @DisabledOnOs, etc.) even when the "per-method" test instance lifecycle mode is active.

If you would prefer that JUnit Jupiter execute all test methods on the same test instance, annotate your test class with @TestInstance(Lifecycle.PER_CLASS). When using this mode, a new test instance will be created once per test class. Thus, if your test methods rely on state stored in instance variables, you may need to reset that state in @BeforeEach or @AfterEach methods.

The "per-class" mode has some additional benefits over the default "per-method" mode. Specifically, with the "per-class" mode it becomes possible to declare @BeforeAll and @AfterAll on non-static methods as well as on interface default methods. The "per-class" mode therefore also makes it possible to use @BeforeAll and @AfterAll methods in @Nested test classes.

If you are authoring tests using the Kotlin programming language, you may also find it easier to implement @BeforeAll and @AfterAll methods by switching to the "per-class" test instance lifecycle mode.

Changing the Default Test Instance Lifecycle

If a test class or test interface is not annotated with @TestInstance, JUnit Jupiter will use a default lifecycle mode. The standard default mode is PER_METHOD; however, it is possible to change the default for the execution of an entire test plan. To change the default test instance lifecycle mode, set the junit.jupiter.testinstance.lifecycle.default configuration parameter to the name of an enum constant defined in TestInstance.Lifecycle, ignoring case. This can be supplied as a JVM system property, as a configuration parameter in the LauncherDiscoveryRequest that is passed to the Launcher, or via the JUnit Platform configuration file (see [running-tests-config-params] for details).

For example, to set the default test instance lifecycle mode to Lifecycle.PER_CLASS, you can start your JVM with the following system property.

-Djunit.jupiter.testinstance.lifecycle.default=per_class

Note, however, that setting the default test instance lifecycle mode via the JUnit Platform configuration file is a more robust solution since the configuration file can be checked into a version control system along with your project and can therefore be used within IDEs and your build software.

To set the default test instance lifecycle mode to Lifecycle.PER_CLASS via the JUnit Platform configuration file, create a file named junit-platform.properties in the root of the class path (e.g., src/test/resources) with the following content.

junit.jupiter.testinstance.lifecycle.default = per_class

Warning
Changing the default test instance lifecycle mode can lead to unpredictable results and fragile builds if not applied consistently. For example, if the build configures "per-class" semantics as the default but tests in the IDE are executed using "per-method" semantics, that can make it difficult to debug errors that occur on the build server. It is therefore recommended to change the default in the JUnit Platform configuration file instead of via a JVM system property.

Nested Tests

@Nested tests give the test writer more capabilities to express the relationship among several groups of tests. Such nested tests make use of Java’s nested classes and facilitate hierarchical thinking about the test structure. Here’s an elaborate example, both as source code and as a screenshot of the execution within an IDE.

Nested test suite for testing a stack
link:{testDir}/example/TestingAStackDemo.java[role=include]

When executing this example in an IDE, the test execution tree in the GUI will look similar to the following image.

writing tests nested test ide
Executing a nested test in an IDE

In this example, preconditions from outer tests are used in inner tests by defining hierarchical lifecycle methods for the setup code. For example, createNewStack() is a @BeforeEach lifecycle method that is used in the test class in which it is defined and in all levels in the nesting tree below the class in which it is defined.

The fact that setup code from outer tests is run before inner tests are executed gives you the ability to run all tests independently. You can even run inner tests alone without running the outer tests, because the setup code from the outer tests is always executed.

Note
Only non-static nested classes (i.e. inner classes) can serve as @Nested test classes. Nesting can be arbitrarily deep, and those inner classes are subject to full lifecycle support with one exception: @BeforeAll and @AfterAll methods do not work by default. The reason is that Java does not allow static members in inner classes. However, this restriction can be circumvented by annotating a @Nested test class with @TestInstance(Lifecycle.PER_CLASS) (see Test Instance Lifecycle).

Dependency Injection for Constructors and Methods

In all prior JUnit versions, test constructors or methods were not allowed to have parameters (at least not with the standard Runner implementations). As one of the major changes in JUnit Jupiter, both test constructors and methods are now permitted to have parameters. This allows for greater flexibility and enables Dependency Injection for constructors and methods.

{ParameterResolver} defines the API for test extensions that wish to dynamically resolve parameters at runtime. If a test class constructor, a test method, or a lifecycle method (see Test Classes and Methods) accepts a parameter, the parameter must be resolved at runtime by a registered ParameterResolver.

There are currently three built-in resolvers that are registered automatically.

  • {TestInfoParameterResolver}: if a constructor or method parameter is of type {TestInfo}, the TestInfoParameterResolver will supply an instance of TestInfo corresponding to the current container or test as the value for the parameter. The TestInfo can then be used to retrieve information about the current container or test such as the display name, the test class, the test method, and associated tags. The display name is either a technical name, such as the name of the test class or test method, or a custom name configured via @DisplayName.

    {TestInfo} acts as a drop-in replacement for the TestName rule from JUnit 4. The following demonstrates how to have TestInfo injected into a test constructor, @BeforeEach method, and @Test method.

link:{testDir}/example/TestInfoDemo.java[role=include]
  • {RepetitionInfoParameterResolver}: if a method parameter in a @RepeatedTest, @BeforeEach, or @AfterEach method is of type {RepetitionInfo}, the RepetitionInfoParameterResolver will supply an instance of RepetitionInfo. RepetitionInfo can then be used to retrieve information about the current repetition and the total number of repetitions for the corresponding @RepeatedTest. Note, however, that RepetitionInfoParameterResolver is not registered outside the context of a @RepeatedTest. See Repeated Test Examples.

  • {TestReporterParameterResolver}: if a constructor or method parameter is of type {TestReporter}, the TestReporterParameterResolver will supply an instance of TestReporter. The TestReporter can be used to publish additional data about the current test run. The data can be consumed via the reportingEntryPublished() method in a {TestExecutionListener}, allowing it to be viewed in IDEs or included in reports.

    In JUnit Jupiter you should use TestReporter where you used to print information to stdout or stderr in JUnit 4. Using @RunWith(JUnitPlatform.class) will output all reported entries to stdout. In addition, some IDEs print report entries to stdout or display them in the user interface for test results.

link:{testDir}/example/TestReporterDemo.java[role=include]
Note
Other parameter resolvers must be explicitly enabled by registering appropriate extensions via @ExtendWith.

Check out the {RandomParametersExtension} for an example of a custom {ParameterResolver}. While not intended to be production-ready, it demonstrates the simplicity and expressiveness of both the extension model and the parameter resolution process. MyRandomParametersTest demonstrates how to inject random values into @Test methods.

@ExtendWith(RandomParametersExtension.class)
class MyRandomParametersTest {

	@Test
	void injectsInteger(@Random int i, @Random int j) {
		assertNotEquals(i, j);
	}

	@Test
	void injectsDouble(@Random double d) {
		assertEquals(0.0, d, 1.0);
	}

}

For real-world use cases, check out the source code for the {MockitoExtension} and the {SpringExtension}.

When the type of the parameter to inject is the only condition for your {ParameterResolver}, you can use the generic {TypeBasedParameterResolver} base class. The supportsParameters method is implemented behind the scenes and supports parameterized types.

Test Interfaces and Default Methods

JUnit Jupiter allows @Test, @RepeatedTest, @ParameterizedTest, @TestFactory, @TestTemplate, @BeforeEach, and @AfterEach to be declared on interface default methods. @BeforeAll and @AfterAll can either be declared on static methods in a test interface or on interface default methods if the test interface or test class is annotated with @TestInstance(Lifecycle.PER_CLASS) (see Test Instance Lifecycle). Here are some examples.

link:{testDir}/example/testinterface/TestLifecycleLogger.java[role=include]
link:{testDir}/example/testinterface/TestInterfaceDynamicTestsDemo.java[role=include]

@ExtendWith and @Tag can be declared on a test interface so that classes that implement the interface automatically inherit its tags and extensions. See [extensions-lifecycle-callbacks-before-after-execution] for the source code of the TimingExtension.

link:{testDir}/example/testinterface/TimeExecutionLogger.java[role=include]

In your test class you can then implement these test interfaces to have them applied.

link:{testDir}/example/testinterface/TestInterfaceDemo.java[role=include]

Running the TestInterfaceDemo results in output similar to the following:

INFO  example.TestLifecycleLogger - Before all tests
INFO  example.TestLifecycleLogger - About to execute [dynamicTestsForPalindromes()]
INFO  example.TimingExtension - Method [dynamicTestsForPalindromes] took 19 ms.
INFO  example.TestLifecycleLogger - Finished executing [dynamicTestsForPalindromes()]
INFO  example.TestLifecycleLogger - About to execute [isEqualValue()]
INFO  example.TimingExtension - Method [isEqualValue] took 1 ms.
INFO  example.TestLifecycleLogger - Finished executing [isEqualValue()]
INFO  example.TestLifecycleLogger - After all tests

Another possible application of this feature is to write tests for interface contracts. For example, you can write tests for how implementations of Object.equals or Comparable.compareTo should behave as follows.

link:{testDir}/example/defaultmethods/Testable.java[role=include]
link:{testDir}/example/defaultmethods/EqualsContract.java[role=include]
link:{testDir}/example/defaultmethods/ComparableContract.java[role=include]

In your test class you can then implement both contract interfaces thereby inheriting the corresponding tests. Of course you’ll have to implement the abstract methods.

link:{testDir}/example/defaultmethods/StringTests.java[role=include]
Note
The above tests are merely meant as examples and therefore not complete.

Repeated Tests

JUnit Jupiter provides the ability to repeat a test a specified number of times by annotating a method with @RepeatedTest and specifying the total number of repetitions desired. Each invocation of a repeated test behaves like the execution of a regular @Test method with full support for the same lifecycle callbacks and extensions.

The following example demonstrates how to declare a test named repeatedTest() that will be automatically repeated 10 times.

@RepeatedTest(10)
void repeatedTest() {
	// ...
}

In addition to specifying the number of repetitions, a custom display name can be configured for each repetition via the name attribute of the @RepeatedTest annotation. Furthermore, the display name can be a pattern composed of a combination of static text and dynamic placeholders. The following placeholders are currently supported.

  • {displayName}: display name of the @RepeatedTest method

  • {currentRepetition}: the current repetition count

  • {totalRepetitions}: the total number of repetitions

The default display name for a given repetition is generated based on the following pattern: "repetition {currentRepetition} of {totalRepetitions}". Thus, the display names for individual repetitions of the previous repeatedTest() example would be: repetition 1 of 10, repetition 2 of 10, etc. If you would like the display name of the @RepeatedTest method included in the name of each repetition, you can define your own custom pattern or use the predefined RepeatedTest.LONG_DISPLAY_NAME pattern. The latter is equal to "{displayName} :: repetition {currentRepetition} of {totalRepetitions}" which results in display names for individual repetitions like repeatedTest() :: repetition 1 of 10, repeatedTest() :: repetition 2 of 10, etc.

In order to retrieve information about the current repetition and the total number of repetitions programmatically, a developer can choose to have an instance of RepetitionInfo injected into a @RepeatedTest, @BeforeEach, or @AfterEach method.

Repeated Test Examples

The RepeatedTestsDemo class at the end of this section demonstrates several examples of repeated tests.

The repeatedTest() method is identical to example from the previous section; whereas, repeatedTestWithRepetitionInfo() demonstrates how to have an instance of RepetitionInfo injected into a test to access the total number of repetitions for the current repeated test.

The next two methods demonstrate how to include a custom @DisplayName for the @RepeatedTest method in the display name of each repetition. customDisplayName() combines a custom display name with a custom pattern and then uses TestInfo to verify the format of the generated display name. Repeat! is the {displayName} which comes from the @DisplayName declaration, and 1/1 comes from {currentRepetition}/{totalRepetitions}. In contrast, customDisplayNameWithLongPattern() uses the aforementioned predefined RepeatedTest.LONG_DISPLAY_NAME pattern.

repeatedTestInGerman() demonstrates the ability to translate display names of repeated tests into foreign languages — in this case German, resulting in names for individual repetitions such as: Wiederholung 1 von 5, Wiederholung 2 von 5, etc.

Since the beforeEach() method is annotated with @BeforeEach it will get executed before each repetition of each repeated test. By having the TestInfo and RepetitionInfo injected into the method, we see that it’s possible to obtain information about the currently executing repeated test. Executing RepeatedTestsDemo with the INFO log level enabled results in the following output.

INFO: About to execute repetition 1 of 10 for repeatedTest
INFO: About to execute repetition 2 of 10 for repeatedTest
INFO: About to execute repetition 3 of 10 for repeatedTest
INFO: About to execute repetition 4 of 10 for repeatedTest
INFO: About to execute repetition 5 of 10 for repeatedTest
INFO: About to execute repetition 6 of 10 for repeatedTest
INFO: About to execute repetition 7 of 10 for repeatedTest
INFO: About to execute repetition 8 of 10 for repeatedTest
INFO: About to execute repetition 9 of 10 for repeatedTest
INFO: About to execute repetition 10 of 10 for repeatedTest
INFO: About to execute repetition 1 of 5 for repeatedTestWithRepetitionInfo
INFO: About to execute repetition 2 of 5 for repeatedTestWithRepetitionInfo
INFO: About to execute repetition 3 of 5 for repeatedTestWithRepetitionInfo
INFO: About to execute repetition 4 of 5 for repeatedTestWithRepetitionInfo
INFO: About to execute repetition 5 of 5 for repeatedTestWithRepetitionInfo
INFO: About to execute repetition 1 of 1 for customDisplayName
INFO: About to execute repetition 1 of 1 for customDisplayNameWithLongPattern
INFO: About to execute repetition 1 of 5 for repeatedTestInGerman
INFO: About to execute repetition 2 of 5 for repeatedTestInGerman
INFO: About to execute repetition 3 of 5 for repeatedTestInGerman
INFO: About to execute repetition 4 of 5 for repeatedTestInGerman
INFO: About to execute repetition 5 of 5 for repeatedTestInGerman
link:{testDir}/example/RepeatedTestsDemo.java[role=include]

When using the ConsoleLauncher with the unicode theme enabled, execution of RepeatedTestsDemo results in the following output to the console.

├─ RepeatedTestsDemo ✔
│  ├─ repeatedTest() ✔
│  │  ├─ repetition 1 of 10 ✔
│  │  ├─ repetition 2 of 10 ✔
│  │  ├─ repetition 3 of 10 ✔
│  │  ├─ repetition 4 of 10 ✔
│  │  ├─ repetition 5 of 10 ✔
│  │  ├─ repetition 6 of 10 ✔
│  │  ├─ repetition 7 of 10 ✔
│  │  ├─ repetition 8 of 10 ✔
│  │  ├─ repetition 9 of 10 ✔
│  │  └─ repetition 10 of 10 ✔
│  ├─ repeatedTestWithRepetitionInfo(RepetitionInfo) ✔
│  │  ├─ repetition 1 of 5 ✔
│  │  ├─ repetition 2 of 5 ✔
│  │  ├─ repetition 3 of 5 ✔
│  │  ├─ repetition 4 of 5 ✔
│  │  └─ repetition 5 of 5 ✔
│  ├─ Repeat! ✔
│  │  └─ Repeat! 1/1 ✔
│  ├─ Details... ✔
│  │  └─ Details... :: repetition 1 of 1 ✔
│  └─ repeatedTestInGerman() ✔
│     ├─ Wiederholung 1 von 5 ✔
│     ├─ Wiederholung 2 von 5 ✔
│     ├─ Wiederholung 3 von 5 ✔
│     ├─ Wiederholung 4 von 5 ✔
│     └─ Wiederholung 5 von 5 ✔

Parameterized Tests

Parameterized tests make it possible to run a test multiple times with different arguments. They are declared just like regular @Test methods but use the {ParameterizedTest} annotation instead. In addition, you must declare at least one source that will provide the arguments for each invocation and then consume the arguments in the test method.

The following example demonstrates a parameterized test that uses the @ValueSource annotation to specify a String array as the source of arguments.

link:{testDir}/example/ParameterizedTestDemo.java[role=include]

When executing the above parameterized test method, each invocation will be reported separately. For instance, the ConsoleLauncher will print output similar to the following.

palindromes(String) ✔
├─ [1] candidate=racecar ✔
├─ [2] candidate=radar ✔
└─ [3] candidate=able was I ere I saw elba ✔

Required Setup

In order to use parameterized tests you need to add a dependency on the junit-jupiter-params artifact. Please refer to [dependency-metadata] for details.

Consuming Arguments

Parameterized test methods typically consume arguments directly from the configured source (see Sources of Arguments) following a one-to-one correlation between argument source index and method parameter index (see examples in @CsvSource). However, a parameterized test method may also choose to aggregate arguments from the source into a single object passed to the method (see Argument Aggregation). Additional arguments may also be provided by a ParameterResolver (e.g., to obtain an instance of TestInfo, TestReporter, etc.). Specifically, a parameterized test method must declare formal parameters according to the following rules.

  • Zero or more indexed arguments must be declared first.

  • Zero or more aggregators must be declared next.

  • Zero or more arguments supplied by a ParameterResolver must be declared last.

In this context, an indexed argument is an argument for a given index in the Arguments provided by an ArgumentsProvider that is passed as an argument to the parameterized method at the same index in the method’s formal parameter list. An aggregator is any parameter of type ArgumentsAccessor or any parameter annotated with @AggregateWith.

Note
AutoCloseable arguments

Arguments that implement java.lang.AutoCloseable (or java.io.Closeable which extends java.lang.AutoCloseable) will be automatically closed after @AfterEach methods and AfterEachCallback extensions have been called for the current parameterized test invocation.

To prevent this from happening, set the autoCloseArguments attribute in @ParameterizedTest to false. Specifically, if an argument that implements AutoCloseable is reused for multiple invocations of the same parameterized test method, you must annotate the method with @ParameterizedTest(autoCloseArguments = false) to ensure that the argument is not closed between invocations.

Sources of Arguments

Out of the box, JUnit Jupiter provides quite a few source annotations. Each of the following subsections provides a brief overview and an example for each of them. Please refer to the Javadoc in the {params-provider-package} package for additional information.

@ValueSource

@ValueSource is one of the simplest possible sources. It lets you specify a single array of literal values and can only be used for providing a single argument per parameterized test invocation.

The following types of literal values are supported by @ValueSource.

  • short

  • byte

  • int

  • long

  • float

  • double

  • char

  • boolean

  • java.lang.String

  • java.lang.Class

For example, the following @ParameterizedTest method will be invoked three times, with the values 1, 2, and 3 respectively.

link:{testDir}/example/ParameterizedTestDemo.java[role=include]
Null and Empty Sources

In order to check corner cases and verify proper behavior of our software when it is supplied bad input, it can be useful to have null and empty values supplied to our parameterized tests. The following annotations serve as sources of null and empty values for parameterized tests that accept a single argument.

  • {NullSource}: provides a single null argument to the annotated @ParameterizedTest method.

    • @NullSource cannot be used for a parameter that has a primitive type.

  • {EmptySource}: provides a single empty argument to the annotated @ParameterizedTest method for parameters of the following types: java.lang.String, java.util.List, java.util.Set, java.util.Map, primitive arrays (e.g., int[], char[][], etc.), object arrays (e.g.,String[], Integer[][], etc.).

    • Subtypes of the supported types are not supported.

  • {NullAndEmptySource}: a composed annotation that combines the functionality of @NullSource and @EmptySource.

If you need to supply multiple varying types of blank strings to a parameterized test, you can achieve that using @ValueSource — for example, @ValueSource(strings = {" ", "   ", "\t", "\n"}).

You can also combine @NullSource, @EmptySource, and @ValueSource to test a wider range of null, empty, and blank input. The following example demonstrates how to achieve this for strings.

link:{testDir}/example/ParameterizedTestDemo.java[role=include]

Making use of the composed @NullAndEmptySource annotation simplifies the above as follows.

link:{testDir}/example/ParameterizedTestDemo.java[role=include]
Note
Both variants of the nullEmptyAndBlankStrings(String) parameterized test method result in six invocations: 1 for null, 1 for the empty string, and 4 for the explicit blank strings supplied via @ValueSource.
@EnumSource

@EnumSource provides a convenient way to use Enum constants.

link:{testDir}/example/ParameterizedTestDemo.java[role=include]

The annotation’s value attribute is optional. When omitted, the declared type of the first method parameter is used. The test will fail if it does not reference an enum type. Thus, the value attribute is required in the above example because the method parameter is declared as TemporalUnit, i.e. the interface implemented by ChronoUnit, which isn’t an enum type. Changing the method parameter type to ChronoUnit allows you to omit the explicit enum type from the annotation as follows.

link:{testDir}/example/ParameterizedTestDemo.java[role=include]

The annotation provides an optional names attribute that lets you specify which constants shall be used, like in the following example. If omitted, all constants will be used.

link:{testDir}/example/ParameterizedTestDemo.java[role=include]

The @EnumSource annotation also provides an optional mode attribute that enables fine-grained control over which constants are passed to the test method. For example, you can exclude names from the enum constant pool or specify regular expressions as in the following examples.

link:{testDir}/example/ParameterizedTestDemo.java[role=include]
link:{testDir}/example/ParameterizedTestDemo.java[role=include]
@MethodSource

{MethodSource} allows you to refer to one or more factory methods of the test class or external classes.

Factory methods within the test class must be static unless the test class is annotated with @TestInstance(Lifecycle.PER_CLASS); whereas, factory methods in external classes must always be static. In addition, such factory methods must not accept any arguments.

Each factory method must generate a stream of arguments, and each set of arguments within the stream will be provided as the physical arguments for individual invocations of the annotated @ParameterizedTest method. Generally speaking this translates to a Stream of Arguments (i.e., Stream<Arguments>); however, the actual concrete return type can take on many forms. In this context, a "stream" is anything that JUnit can reliably convert into a Stream, such as Stream, DoubleStream, LongStream, IntStream, Collection, Iterator, Iterable, an array of objects, or an array of primitives. The "arguments" within the stream can be supplied as an instance of Arguments, an array of objects (e.g., Object[]), or a single value if the parameterized test method accepts a single argument.

If you only need a single parameter, you can return a Stream of instances of the parameter type as demonstrated in the following example.

link:{testDir}/example/ParameterizedTestDemo.java[role=include]

If you do not explicitly provide a factory method name via @MethodSource, JUnit Jupiter will search for a factory method that has the same name as the current @ParameterizedTest method by convention. This is demonstrated in the following example.

link:{testDir}/example/ParameterizedTestDemo.java[role=include]

Streams for primitive types (DoubleStream, IntStream, and LongStream) are also supported as demonstrated by the following example.

link:{testDir}/example/ParameterizedTestDemo.java[role=include]

If a parameterized test method declares multiple parameters, you need to return a collection, stream, or array of Arguments instances or object arrays as shown below (see the Javadoc for {MethodSource} for further details on supported return types). Note that arguments(Object…​) is a static factory method defined in the Arguments interface. In addition, Arguments.of(Object…​) may be used as an alternative to arguments(Object…​).

link:{testDir}/example/ParameterizedTestDemo.java[role=include]

An external, static factory method can be referenced by providing its fully qualified method name as demonstrated in the following example.

package example;

link:{testDir}/example/ExternalMethodSourceDemo.java[role=include]
@CsvSource

@CsvSource allows you to express argument lists as comma-separated values (i.e., CSV String literals). Each string provided via the value attribute in @CsvSource represents a CSV record and results in one invocation of the parameterized test. The first record may optionally be used to supply CSV headers (see the Javadoc for the useHeadersInDisplayName attribute for details and an example).

link:{testDir}/example/ParameterizedTestDemo.java[role=include]

The default delimiter is a comma (,), but you can use another character by setting the delimiter attribute. Alternatively, the delimiterString attribute allows you to use a String delimiter instead of a single character. However, both delimiter attributes cannot be set simultaneously.

By default, @CsvSource uses a single quote (') as its quote character, but this can be changed via the quoteCharacter attribute. See the 'lemon, lime' value in the example above and in the table below. An empty, quoted value ('') results in an empty String unless the emptyValue attribute is set; whereas, an entirely empty value is interpreted as a null reference. By specifying one or more nullValues, a custom value can be interpreted as a null reference (see the NIL example in the table below). An ArgumentConversionException is thrown if the target type of a null reference is a primitive type.

Note
An unquoted empty value will always be converted to a null reference regardless of any custom values configured via the nullValues attribute.

Except within a quoted string, leading and trailing whitespace in a CSV column is trimmed by default. This behavior can be changed by setting the ignoreLeadingAndTrailingWhitespace attribute to true.

Example Input Resulting Argument List

@CsvSource({ "apple, banana" })

"apple", "banana"

@CsvSource({ "apple, 'lemon, lime'" })

"apple", "lemon, lime"

@CsvSource({ "apple, ''" })

"apple", ""

@CsvSource({ "apple, " })

"apple", null

@CsvSource(value = { "apple, banana, NIL" }, nullValues = "NIL")

"apple", "banana", null

@CsvSource(value = { " apple , banana" }, ignoreLeadingAndTrailingWhitespace = false)

" apple ", " banana"

If the programming language you are using supports text blocks — for example, Java SE 15 or higher — you can alternatively use the textBlock attribute of @CsvSource. Each record within a text block represents a CSV record and results in one invocation of the parameterized test. The first record may optionally be used to supply CSV headers by setting the useHeadersInDisplayName attribute to true as in the example below.

Using a text block, the previous example can be implemented as follows.

@ParameterizedTest(name = "[{index}] {arguments}")
@CsvSource(useHeadersInDisplayName = true, textBlock = """
	FRUIT,         RANK
	apple,         1
	banana,        2
	'lemon, lime', 0xF1
	strawberry,    700_000
	""")
void testWithCsvSource(String fruit, int rank) {
	// ...
}

The generated display names for the previous example include the CSV header names.

[1] FRUIT = apple, RANK = 1
[2] FRUIT = banana, RANK = 2
[3] FRUIT = lemon, lime, RANK = 0xF1
[4] FRUIT = strawberry, RANK = 700_000

In contrast to CSV records supplied via the value attribute, a text block can contain comments. Any line beginning with a # symbol will be treated as a comment and ignored. Note, however, that the # symbol must be the first character on the line without any leading whitespace. It is therefore recommended that the closing text block delimiter (""") be placed either at the end of the last line of input or on the following line, left aligned with the rest of the input (as can be seen in the example below which demonstrates formatting similar to a table).

@ParameterizedTest
@CsvSource(delimiter = '|', quoteCharacter = '"', textBlock = """
	#-----------------------------
	#    FRUIT     |     RANK
	#-----------------------------
	     apple     |      1
	#-----------------------------
	     banana    |      2
	#-----------------------------
	  "lemon lime" |     0xF1
	#-----------------------------
	   strawberry  |    700_000
	#-----------------------------
	""")
void testWithCsvSource(String fruit, int rank) {
	// ...
}
Note

Java’s text block feature automatically removes incidental whitespace when the code is compiled. However other JVM languages such as Groovy and Kotlin do not. Thus, if you are using a programming language other than Java and your text block contains comments or new lines within quoted strings, you will need to ensure that there is no leading whitespace within your text block.

@CsvFileSource

@CsvFileSource lets you use comma-separated value (CSV) files from the classpath or the local file system. Each record from a CSV file results in one invocation of the parameterized test. The first record may optionally be used to supply CSV headers. You can instruct JUnit to ignore the headers via the numLinesToSkip attribute. If you would like for the headers to be used in the display names, you can set the useHeadersInDisplayName attribute to true. The examples below demonstrate the use of numLinesToSkip and useHeadersInDisplayName.

The default delimiter is a comma (,), but you can use another character by setting the delimiter attribute. Alternatively, the delimiterString attribute allows you to use a String delimiter instead of a single character. However, both delimiter attributes cannot be set simultaneously.

Note
Comments in CSV files
Any line beginning with a # symbol will be interpreted as a comment and will be ignored.
link:{testDir}/example/ParameterizedTestDemo.java[role=include]
two-column.csv
link:{testResourcesDir}/two-column.csv[role=include]

The following listing shows the generated display names for the first two parameterized test methods above.

[1] country=Sweden, reference=1
[2] country=Poland, reference=2
[3] country=United States of America, reference=3
[4] country=France, reference=700_000

The following listing shows the generated display names for the last parameterized test method above that uses CSV header names.

[1] COUNTRY = Sweden, REFERENCE = 1
[2] COUNTRY = Poland, REFERENCE = 2
[3] COUNTRY = United States of America, REFERENCE = 3
[4] COUNTRY = France, REFERENCE = 700_000

In contrast to the default syntax used in @CsvSource, @CsvFileSource uses a double quote (") as the quote character by default, but this can be changed via the quoteCharacter attribute. See the "United States of America" value in the example above. An empty, quoted value ("") results in an empty String unless the emptyValue attribute is set; whereas, an entirely empty value is interpreted as a null reference. By specifying one or more nullValues, a custom value can be interpreted as a null reference. An ArgumentConversionException is thrown if the target type of a null reference is a primitive type.

Note
An unquoted empty value will always be converted to a null reference regardless of any custom values configured via the nullValues attribute.

Except within a quoted string, leading and trailing whitespace in a CSV column is trimmed by default. This behavior can be changed by setting the ignoreLeadingAndTrailingWhitespace attribute to true.

@ArgumentsSource

@ArgumentsSource can be used to specify a custom, reusable ArgumentsProvider. Note that an implementation of ArgumentsProvider must be declared as either a top-level class or as a static nested class.

link:{testDir}/example/ParameterizedTestDemo.java[role=include]
link:{testDir}/example/ParameterizedTestDemo.java[role=include]

Argument Conversion

Widening Conversion

JUnit Jupiter supports Widening Primitive Conversion for arguments supplied to a @ParameterizedTest. For example, a parameterized test annotated with @ValueSource(ints = { 1, 2, 3 }) can be declared to accept not only an argument of type int but also an argument of type long, float, or double.

Implicit Conversion

To support use cases like @CsvSource, JUnit Jupiter provides a number of built-in implicit type converters. The conversion process depends on the declared type of each method parameter.

For example, if a @ParameterizedTest declares a parameter of type TimeUnit and the actual type supplied by the declared source is a String, the string will be automatically converted into the corresponding TimeUnit enum constant.

link:{testDir}/example/ParameterizedTestDemo.java[role=include]

String instances are implicitly converted to the following target types.

Note
Decimal, hexadecimal, and octal String literals will be converted to their integral types: byte, short, int, long, and their boxed counterparts.
Target Type Example

boolean/Boolean

"true"true

byte/Byte

"15", "0xF", or "017"(byte) 15

char/Character

"o"'o'

short/Short

"15", "0xF", or "017"(short) 15

int/Integer

"15", "0xF", or "017"15

long/Long

"15", "0xF", or "017"15L

float/Float

"1.0"1.0f

double/Double

"1.0"1.0d

Enum subclass

"SECONDS"TimeUnit.SECONDS

java.io.File

"/path/to/file"new File("/path/to/file")

java.lang.Class

"java.lang.Integer"java.lang.Integer.class (use $ for nested classes, e.g. "java.lang.Thread$State")

java.lang.Class

"byte"byte.class (primitive types are supported)

java.lang.Class

"char[]"char[].class (array types are supported)

java.math.BigDecimal

"123.456e789"new BigDecimal("123.456e789")

java.math.BigInteger

"1234567890123456789"new BigInteger("1234567890123456789")

java.net.URI

"https://junit.org/"URI.create("https://junit.org/")

java.net.URL

"https://junit.org/"new URL("https://junit.org/")

java.nio.charset.Charset

"UTF-8"Charset.forName("UTF-8")

java.nio.file.Path

"/path/to/file"Paths.get("/path/to/file")

java.time.Duration

"PT3S"Duration.ofSeconds(3)

java.time.Instant

"1970-01-01T00:00:00Z"Instant.ofEpochMilli(0)

java.time.LocalDateTime

"2017-03-14T12:34:56.789"LocalDateTime.of(2017, 3, 14, 12, 34, 56, 789_000_000)

java.time.LocalDate

"2017-03-14"LocalDate.of(2017, 3, 14)

java.time.LocalTime

"12:34:56.789"LocalTime.of(12, 34, 56, 789_000_000)

java.time.MonthDay

"--03-14"MonthDay.of(3, 14)

java.time.OffsetDateTime

"2017-03-14T12:34:56.789Z"OffsetDateTime.of(2017, 3, 14, 12, 34, 56, 789_000_000, ZoneOffset.UTC)

java.time.OffsetTime

"12:34:56.789Z"OffsetTime.of(12, 34, 56, 789_000_000, ZoneOffset.UTC)

java.time.Period

"P2M6D"Period.of(0, 2, 6)

java.time.YearMonth

"2017-03"YearMonth.of(2017, 3)

java.time.Year

"2017"Year.of(2017)

java.time.ZonedDateTime

"2017-03-14T12:34:56.789Z"ZonedDateTime.of(2017, 3, 14, 12, 34, 56, 789_000_000, ZoneOffset.UTC)

java.time.ZoneId

"Europe/Berlin"ZoneId.of("Europe/Berlin")

java.time.ZoneOffset

"+02:30"ZoneOffset.ofHoursMinutes(2, 30)

java.util.Currency

"JPY"Currency.getInstance("JPY")

java.util.Locale

"en"new Locale("en")

java.util.UUID

"d043e930-7b3b-48e3-bdbe-5a3ccfb833db"UUID.fromString("d043e930-7b3b-48e3-bdbe-5a3ccfb833db")

Fallback String-to-Object Conversion

In addition to implicit conversion from strings to the target types listed in the above table, JUnit Jupiter also provides a fallback mechanism for automatic conversion from a String to a given target type if the target type declares exactly one suitable factory method or a factory constructor as defined below.

  • factory method: a non-private, static method declared in the target type that accepts a single String argument and returns an instance of the target type. The name of the method can be arbitrary and need not follow any particular convention.

  • factory constructor: a non-private constructor in the target type that accepts a single String argument. Note that the target type must be declared as either a top-level class or as a static nested class.

Note
If multiple factory methods are discovered, they will be ignored. If a factory method and a factory constructor are discovered, the factory method will be used instead of the constructor.

For example, in the following @ParameterizedTest method, the Book argument will be created by invoking the Book.fromTitle(String) factory method and passing "42 Cats" as the title of the book.

link:{testDir}/example/ParameterizedTestDemo.java[role=include]
link:{testDir}/example/ParameterizedTestDemo.java[role=include]
Explicit Conversion

Instead of relying on implicit argument conversion you may explicitly specify an ArgumentConverter to use for a certain parameter using the @ConvertWith annotation like in the following example. Note that an implementation of ArgumentConverter must be declared as either a top-level class or as a static nested class.

link:{testDir}/example/ParameterizedTestDemo.java[role=include]
link:{testDir}/example/ParameterizedTestDemo.java[role=include]

If the converter is only meant to convert one type to another, you can extend TypedArgumentConverter to avoid boilerplate type checks.

link:{testDir}/example/ParameterizedTestDemo.java[role=include]

Explicit argument converters are meant to be implemented by test and extension authors. Thus, junit-jupiter-params only provides a single explicit argument converter that may also serve as a reference implementation: JavaTimeArgumentConverter. It is used via the composed annotation JavaTimeConversionPattern.

link:{testDir}/example/ParameterizedTestDemo.java[role=include]

Argument Aggregation

By default, each argument provided to a @ParameterizedTest method corresponds to a single method parameter. Consequently, argument sources which are expected to supply a large number of arguments can lead to large method signatures.

In such cases, an {ArgumentsAccessor} can be used instead of multiple parameters. Using this API, you can access the provided arguments through a single argument passed to your test method. In addition, type conversion is supported as discussed in Implicit Conversion.

link:{testDir}/example/ParameterizedTestDemo.java[role=include]

An instance of ArgumentsAccessor is automatically injected into any parameter of type ArgumentsAccessor.

Custom Aggregators

Apart from direct access to a @ParameterizedTest method’s arguments using an ArgumentsAccessor, JUnit Jupiter also supports the usage of custom, reusable aggregators.

To use a custom aggregator, implement the {ArgumentsAggregator} interface and register it via the @AggregateWith annotation on a compatible parameter in the @ParameterizedTest method. The result of the aggregation will then be provided as an argument for the corresponding parameter when the parameterized test is invoked. Note that an implementation of ArgumentsAggregator must be declared as either a top-level class or as a static nested class.

link:{testDir}/example/ParameterizedTestDemo.java[role=include]
link:{testDir}/example/ParameterizedTestDemo.java[role=include]

If you find yourself repeatedly declaring @AggregateWith(MyTypeAggregator.class) for multiple parameterized test methods across your codebase, you may wish to create a custom composed annotation such as @CsvToMyType that is meta-annotated with @AggregateWith(MyTypeAggregator.class). The following example demonstrates this in action with a custom @CsvToPerson annotation.

link:{testDir}/example/ParameterizedTestDemo.java[role=include]
link:{testDir}/example/ParameterizedTestDemo.java[role=include]

Customizing Display Names

By default, the display name of a parameterized test invocation contains the invocation index and the String representation of all arguments for that specific invocation. Each of them is preceded by the parameter name (unless the argument is only available via an ArgumentsAccessor or ArgumentAggregator), if present in the bytecode (for Java, test code must be compiled with the -parameters compiler flag).

However, you can customize invocation display names via the name attribute of the @ParameterizedTest annotation like in the following example.

link:{testDir}/example/ParameterizedTestDemo.java[role=include]

When executing the above method using the ConsoleLauncher you will see output similar to the following.

Display name of container ✔
├─ 1 ==> the rank of 'apple' is 1 ✔
├─ 2 ==> the rank of 'banana' is 2 ✔
└─ 3 ==> the rank of 'lemon, lime' is 3 ✔

Please note that name is a MessageFormat pattern. Thus, a single quote (') needs to be represented as a doubled single quote ('') in order to be displayed.

The following placeholders are supported within custom display names.

Placeholder Description

{displayName}

the display name of the method

{index}

the current invocation index (1-based)

{arguments}

the complete, comma-separated arguments list

{argumentsWithNames}

the complete, comma-separated arguments list with parameter names

{0}, {1}, …​

an individual argument

Note
When including arguments in display names, their string representations are truncated if they exceed the configured maximum length. The limit is configurable via the junit.jupiter.params.displayname.argument.maxlength configuration parameter and defaults to 512 characters.

When using @MethodSource or @ArgumentSource, you can give names to arguments. This name will be used if the argument is included in the invocation display name, like in the example below.

link:{testDir}/example/ParameterizedTestDemo.java[role=include]
A parameterized test with named arguments ✔
├─ 1: An important file ✔
└─ 2: Another file ✔

If you’d like to set default name pattern for all parameterized tests in your project, you can add the following configuration to junit-platform.properties

junit.jupiter.params.displayname.default = {index}

the display name for a parameterized method is determined according to the following precedence rules:

  1. name of @ParameterizedTest, if present

  2. the value of junit.jupiter.params.displayname.default (from junit-platform.properties), if present

  3. DEFAULT_DISPLAY_NAME constant defined in @ParameterizedTest

Lifecycle and Interoperability

Each invocation of a parameterized test has the same lifecycle as a regular @Test method. For example, @BeforeEach methods will be executed before each invocation. Similar to Dynamic Tests, invocations will appear one by one in the test tree of an IDE. You may at will mix regular @Test methods and @ParameterizedTest methods within the same test class.

You may use ParameterResolver extensions with @ParameterizedTest methods. However, method parameters that are resolved by argument sources need to come first in the argument list. Since a test class may contain regular tests as well as parameterized tests with different parameter lists, values from argument sources are not resolved for lifecycle methods (e.g. @BeforeEach) and test class constructors.

link:{testDir}/example/ParameterizedTestDemo.java[role=include]

Test Templates

A {TestTemplate} method is not a regular test case but rather a template for test cases. As such, it is designed to be invoked multiple times depending on the number of invocation contexts returned by the registered providers. Thus, it must be used in conjunction with a registered {TestTemplateInvocationContextProvider} extension. Each invocation of a test template method behaves like the execution of a regular @Test method with full support for the same lifecycle callbacks and extensions. Please refer to [extensions-test-templates] for usage examples.

Note
Repeated Tests and Parameterized Tests are built-in specializations of test templates.

Dynamic Tests

The standard @Test annotation in JUnit Jupiter described in Annotations is very similar to the @Test annotation in JUnit 4. Both describe methods that implement test cases. These test cases are static in the sense that they are fully specified at compile time, and their behavior cannot be changed by anything happening at runtime. Assumptions provide a basic form of dynamic behavior but are intentionally rather limited in their expressiveness.

In addition to these standard tests a completely new kind of test programming model has been introduced in JUnit Jupiter. This new kind of test is a dynamic test which is generated at runtime by a factory method that is annotated with @TestFactory.

In contrast to @Test methods, a @TestFactory method is not itself a test case but rather a factory for test cases. Thus, a dynamic test is the product of a factory. Technically speaking, a @TestFactory method must return a single DynamicNode or a Stream, Collection, Iterable, Iterator, or array of DynamicNode instances. Instantiable subclasses of DynamicNode are DynamicContainer and DynamicTest. DynamicContainer instances are composed of a display name and a list of dynamic child nodes, enabling the creation of arbitrarily nested hierarchies of dynamic nodes. DynamicTest instances will be executed lazily, enabling dynamic and even non-deterministic generation of test cases.

Any Stream returned by a @TestFactory will be properly closed by calling stream.close(), making it safe to use a resource such as Files.lines().

As with @Test methods, @TestFactory methods must not be private or static and may optionally declare parameters to be resolved by ParameterResolvers.

A DynamicTest is a test case generated at runtime. It is composed of a display name and an Executable. Executable is a @FunctionalInterface which means that the implementations of dynamic tests can be provided as lambda expressions or method references.

Warning
Dynamic Test Lifecycle
The execution lifecycle of a dynamic test is quite different than it is for a standard @Test case. Specifically, there are no lifecycle callbacks for individual dynamic tests. This means that @BeforeEach and @AfterEach methods and their corresponding extension callbacks are executed for the @TestFactory method but not for each dynamic test. In other words, if you access fields from the test instance within a lambda expression for a dynamic test, those fields will not be reset by callback methods or extensions between the execution of individual dynamic tests generated by the same @TestFactory method.

As of JUnit Jupiter {jupiter-version}, dynamic tests must always be created by factory methods; however, this might be complemented by a registration facility in a later release.

Dynamic Test Examples

The following DynamicTestsDemo class demonstrates several examples of test factories and dynamic tests.

The first method returns an invalid return type. Since an invalid return type cannot be detected at compile time, a JUnitException is thrown when it is detected at runtime.

The next six methods are very simple examples that demonstrate the generation of a Collection, Iterable, Iterator, array, or Stream of DynamicTest instances. Most of these examples do not really exhibit dynamic behavior but merely demonstrate the supported return types in principle. However, dynamicTestsFromStream() and dynamicTestsFromIntStream() demonstrate how easy it is to generate dynamic tests for a given set of strings or a range of input numbers.

The next method is truly dynamic in nature. generateRandomNumberOfTests() implements an Iterator that generates random numbers, a display name generator, and a test executor and then provides all three to DynamicTest.stream(). Although the non-deterministic behavior of generateRandomNumberOfTests() is of course in conflict with test repeatability and should thus be used with care, it serves to demonstrate the expressiveness and power of dynamic tests.

The next method is similar to generateRandomNumberOfTests() in terms of flexibility; however, dynamicTestsFromStreamFactoryMethod() generates a stream of dynamic tests from an existing Stream via the DynamicTest.stream() factory method.

For demonstration purposes, the dynamicNodeSingleTest() method generates a single DynamicTest instead of a stream, and the dynamicNodeSingleContainer() method generates a nested hierarchy of dynamic tests utilizing DynamicContainer.

link:{testDir}/example/DynamicTestsDemo.java[role=include]

URI Test Sources for Dynamic Tests

The JUnit Platform provides TestSource, a representation of the source of a test or container used to navigate to its location by IDEs and build tools.

The TestSource for a dynamic test or dynamic container can be constructed from a java.net.URI which can be supplied via the DynamicTest.dynamicTest(String, URI, Executable) or DynamicContainer.dynamicContainer(String, URI, Stream) factory method, respectively. The URI will be converted to one of the following TestSource implementations.

ClasspathResourceSource

If the URI contains the classpath scheme — for example, classpath:/test/foo.xml?line=20,column=2.

DirectorySource

If the URI represents a directory present in the file system.

FileSource

If the URI represents a file present in the file system.

MethodSource

If the URI contains the method scheme and the fully qualified method name (FQMN) — for example, method:org.junit.Foo#bar(java.lang.String, java.lang.String[]). Please refer to the Javadoc for DiscoverySelectors.selectMethod(String) for the supported formats for a FQMN.

ClassSource

If the URI contains the class scheme and the fully qualified class name — for example, class:org.junit.Foo?line=42.

UriSource

If none of the above TestSource implementations are applicable.

Timeouts

The @Timeout annotation allows one to declare that a test, test factory, test template, or lifecycle method should fail if its execution time exceeds a given duration. The time unit for the duration defaults to seconds but is configurable.

The following example shows how @Timeout is applied to lifecycle and test methods.

link:{testDir}/example/TimeoutDemo.java[role=include]

Contrary to the assertTimeoutPreemptively() assertion, the execution of the annotated method proceeds in the main thread of the test. If the timeout is exceeded, the main thread is interrupted from another thread. This is done to ensure interoperability with frameworks such as Spring that make use of mechanisms that are sensitive to the currently running thread — for example, ThreadLocal transaction management.

To apply the same timeout to all test methods within a test class and all of its @Nested classes, you can declare the @Timeout annotation at the class level. It will then be applied to all test, test factory, and test template methods within that class and its @Nested classes unless overridden by a @Timeout annotation on a specific method or @Nested class. Please note that @Timeout annotations declared at the class level are not applied to lifecycle methods.

Declaring @Timeout on a @TestFactory method checks that the factory method returns within the specified duration but does not verify the execution time of each individual DynamicTest generated by the factory. Please use assertTimeout() or assertTimeoutPreemptively() for that purpose.

If @Timeout is present on a @TestTemplate method — for example, a @RepeatedTest or @ParameterizedTest — each invocation will have the given timeout applied to it.

The following configuration parameters can be used to specify global timeouts for all methods of a certain category unless they or an enclosing test class is annotated with @Timeout:

junit.jupiter.execution.timeout.default

Default timeout for all testable and lifecycle methods

junit.jupiter.execution.timeout.testable.method.default

Default timeout for all testable methods

junit.jupiter.execution.timeout.test.method.default

Default timeout for @Test methods

junit.jupiter.execution.timeout.testtemplate.method.default

Default timeout for @TestTemplate methods

junit.jupiter.execution.timeout.testfactory.method.default

Default timeout for @TestFactory methods

junit.jupiter.execution.timeout.lifecycle.method.default

Default timeout for all lifecycle methods

junit.jupiter.execution.timeout.beforeall.method.default

Default timeout for @BeforeAll methods

junit.jupiter.execution.timeout.beforeeach.method.default

Default timeout for @BeforeEach methods

junit.jupiter.execution.timeout.aftereach.method.default

Default timeout for @AfterEach methods

junit.jupiter.execution.timeout.afterall.method.default

Default timeout for @AfterAll methods

More specific configuration parameters override less specific ones. For example, junit.jupiter.execution.timeout.test.method.default overrides junit.jupiter.execution.timeout.testable.method.default which overrides junit.jupiter.execution.timeout.default.

The values of such configuration parameters must be in the following, case-insensitive format: <number> [ns|μs|ms|s|m|h|d]. The space between the number and the unit may be omitted. Specifying no unit is equivalent to using seconds.

Table 1. Example timeout configuration parameter values
Parameter value Equivalent annotation

42

@Timeout(42)

42 ns

@Timeout(value = 42, unit = NANOSECONDS)

42 μs

@Timeout(value = 42, unit = MICROSECONDS)

42 ms

@Timeout(value = 42, unit = MILLISECONDS)

42 s

@Timeout(value = 42, unit = SECONDS)

42 m

@Timeout(value = 42, unit = MINUTES)

42 h

@Timeout(value = 42, unit = HOURS)

42 d

@Timeout(value = 42, unit = DAYS)

Using @Timeout for Polling Tests

When dealing with asynchronous code, it is common to write tests that poll while waiting for something to happen before performing any assertions. In some cases you can rewrite the logic to use a CountDownLatch or another synchronization mechanism, but sometimes that is not possible — for example, if the subject under test sends a message to a channel in an external message broker and assertions cannot be performed until the message has been successfully sent through the channel. Asynchronous tests like these require some form of timeout to ensure they don’t hang the test suite by executing indefinitely, as would be the case if an asynchronous message never gets successfully delivered.

By configuring a timeout for an asynchronous test that polls, you can ensure that the test does not execute indefinitely. The following example demonstrates how to achieve this with JUnit Jupiter’s @Timeout annotation. This technique can be used to implement "poll until" logic very easily.

link:{testDir}/example/PollingTimeoutDemo.java[role=include]
Note
If you need more control over polling intervals and greater flexibility with asynchronous tests, consider using a dedicated library such as Awaitility.

Disable @Timeout Globally

When stepping through your code in a debug session, a fixed timeout limit may influence the result of the test, e.g. mark the test as failed although all assertions were met.

JUnit Jupiter supports the junit.jupiter.execution.timeout.mode configuration parameter to configure when timeouts are applied. There are three modes: enabled, disabled, and disabled_on_debug. The default mode is enabled. A VM runtime is considered to run in debug mode when one of its input parameters starts with -agentlib:jdwp. This heuristic is queried by the disabled_on_debug mode.

Parallel Execution

Warning
Parallel test execution is an experimental feature
You’re invited to give it a try and provide feedback to the JUnit team so they can improve and eventually promote this feature.

By default, JUnit Jupiter tests are run sequentially in a single thread. Running tests in parallel — for example, to speed up execution — is available as an opt-in feature since version 5.3. To enable parallel execution, set the junit.jupiter.execution.parallel.enabled configuration parameter to true — for example, in junit-platform.properties (see [running-tests-config-params] for other options).

Please note that enabling this property is only the first step required to execute tests in parallel. If enabled, test classes and methods will still be executed sequentially by default. Whether or not a node in the test tree is executed concurrently is controlled by its execution mode. The following two modes are available.

SAME_THREAD

Force execution in the same thread used by the parent. For example, when used on a test method, the test method will be executed in the same thread as any @BeforeAll or @AfterAll methods of the containing test class.

CONCURRENT

Execute concurrently unless a resource lock forces execution in the same thread.

By default, nodes in the test tree use the SAME_THREAD execution mode. You can change the default by setting the junit.jupiter.execution.parallel.mode.default configuration parameter. Alternatively, you can use the {Execution} annotation to change the execution mode for the annotated element and its subelements (if any) which allows you to activate parallel execution for individual test classes, one by one.

Configuration parameters to execute all tests in parallel
junit.jupiter.execution.parallel.enabled = true
junit.jupiter.execution.parallel.mode.default = concurrent

The default execution mode is applied to all nodes of the test tree with a few notable exceptions, namely test classes that use the Lifecycle.PER_CLASS mode or a {MethodOrderer} (except for {MethodOrderer_Random}). In the former case, test authors have to ensure that the test class is thread-safe; in the latter, concurrent execution might conflict with the configured execution order. Thus, in both cases, test methods in such test classes are only executed concurrently if the @Execution(CONCURRENT) annotation is present on the test class or method.

All nodes of the test tree that are configured with the CONCURRENT execution mode will be executed fully in parallel according to the provided configuration while observing the declarative synchronization mechanism. Please note that [running-tests-capturing-output] needs to be enabled separately.

In addition, you can configure the default execution mode for top-level classes by setting the junit.jupiter.execution.parallel.mode.classes.default configuration parameter. By combining both configuration parameters, you can configure classes to run in parallel but their methods in the same thread:

Configuration parameters to execute top-level classes in parallel but methods in same thread
junit.jupiter.execution.parallel.enabled = true
junit.jupiter.execution.parallel.mode.default = same_thread
junit.jupiter.execution.parallel.mode.classes.default = concurrent

The opposite combination will run all methods within one class in parallel, but top-level classes will run sequentially:

Configuration parameters to execute top-level classes sequentially but their methods in parallel
junit.jupiter.execution.parallel.enabled = true
junit.jupiter.execution.parallel.mode.default = concurrent
junit.jupiter.execution.parallel.mode.classes.default = same_thread

The following diagram illustrates how the execution of two top-level test classes A and B with two test methods per class behaves for all four combinations of junit.jupiter.execution.parallel.mode.default and junit.jupiter.execution.parallel.mode.classes.default (see labels in first column).

writing tests execution mode
Default execution mode configuration combinations

If the junit.jupiter.execution.parallel.mode.classes.default configuration parameter is not explicitly set, the value for junit.jupiter.execution.parallel.mode.default will be used instead.

Configuration

Properties such as the desired parallelism and the maximum pool size can be configured using a {ParallelExecutionConfigurationStrategy}. The JUnit Platform provides two implementations out of the box: dynamic and fixed. Alternatively, you may implement a custom strategy.

To select a strategy, set the junit.jupiter.execution.parallel.config.strategy configuration parameter to one of the following options.

dynamic

Computes the desired parallelism based on the number of available processors/cores multiplied by the junit.jupiter.execution.parallel.config.dynamic.factor configuration parameter (defaults to 1).

fixed

Uses the mandatory junit.jupiter.execution.parallel.config.fixed.parallelism configuration parameter as the desired parallelism.

custom

Allows you to specify a custom {ParallelExecutionConfigurationStrategy} implementation via the mandatory junit.jupiter.execution.parallel.config.custom.class configuration parameter to determine the desired configuration.

If no configuration strategy is set, JUnit Jupiter uses the dynamic configuration strategy with a factor of 1. Consequently, the desired parallelism will be equal to the number of available processors/cores.

Note
Parallelism does not imply maximum number of concurrent threads
JUnit Jupiter does not guarantee that the number of concurrently executing tests will not exceed the configured parallelism. For example, when using one of the synchronization mechanisms described in the next section, the ForkJoinPool that is used behind the scenes may spawn additional threads to ensure execution continues with sufficient parallelism. Thus, if you require such guarantees in a test class, please use your own means of controlling concurrency.

Synchronization

In addition to controlling the execution mode using the {Execution} annotation, JUnit Jupiter provides another annotation-based declarative synchronization mechanism. The {ResourceLock} annotation allows you to declare that a test class or method uses a specific shared resource that requires synchronized access to ensure reliable test execution. The shared resource is identified by a unique name which is a String. The name can be user-defined or one of the predefined constants in {Resources}: SYSTEM_PROPERTIES, SYSTEM_OUT, SYSTEM_ERR, LOCALE, or TIME_ZONE.

If the tests in the following example were run in parallel without the use of {ResourceLock}, they would be flaky. Sometimes they would pass, and at other times they would fail due to the inherent race condition of writing and then reading the same JVM System Property.

When access to shared resources is declared using the {ResourceLock} annotation, the JUnit Jupiter engine uses this information to ensure that no conflicting tests are run in parallel.

Note
Running tests in isolation

If most of your test classes can be run in parallel without any synchronization but you have some test classes that need to run in isolation, you can mark the latter with the {Isolated} annotation. Tests in such classes are executed sequentially without any other tests running at the same time.

In addition to the String that uniquely identifies the shared resource, you may specify an access mode. Two tests that require READ access to a shared resource may run in parallel with each other but not while any other test that requires READ_WRITE access to the same shared resource is running.

link:{testDir}/example/SharedResourcesDemo.java[role=include]

Built-in Extensions

While the JUnit team encourages reusable extensions to be packaged and maintained in separate libraries, the JUnit Jupiter API artifact includes a few user-facing extension implementations that are considered so generally useful that users shouldn’t have to add another dependency.

The TempDirectory Extension

Warning
@TempDir is an experimental feature
You’re invited to give it a try and provide feedback to the JUnit team so they can improve and eventually promote this feature.

The built-in {TempDirectory} extension is used to create and clean up a temporary directory for an individual test or all tests in a test class. It is registered by default. To use it, annotate a field of type java.nio.file.Path or java.io.File with {TempDir} or add a parameter of type java.nio.file.Path or java.io.File annotated with @TempDir to a lifecycle method or test method.

For example, the following test declares a parameter annotated with @TempDir for a single test method, creates and writes to a file in the temporary directory, and checks its content.

A test method that requires a temporary directory
link:{testDir}/example/TempDirectoryDemo.java[role=include]

You can inject multiple temporary directories by specifying multiple annotated parameters.

A test method that requires multiple temporary directories
link:{testDir}/example/TempDirectoryDemo.java[role=include]
Warning
To revert to the old behavior of using a single temporary directory for the entire test class or method (depending on which level the annotation is used), you can set the junit.jupiter.tempdir.scope configuration parameter to per_context. However, please note that this option is deprecated and will be removed in a future release.

@TempDir is not supported on constructor parameters. If you wish to retain a single reference to a temp directory across lifecycle methods and the current test method, please use field injection by annotating an instance field with @TempDir.

The following example stores a shared temporary directory in a static field. This allows the same sharedTempDir to be used in all lifecycle methods and test methods of the test class. For better isolation, you should use an instance field so that each test method uses a separate directory.

A test class that shares a temporary directory across test methods
link:{testDir}/example/TempDirectoryDemo.java[role=include]