No description, website, or topics provided.
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
code Update interpolation_demo.m Jun 15, 2017
data DataFormat.txt Aug 22, 2017
model Add files via upload Jun 15, 2017
tools Add files via upload Jun 7, 2017
README.md Update README.md Nov 3, 2017

README.md

GRASS: Generative Recursive Autoencoders for Shape Structures

By Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao Zhang, Leonidas Guibas

This repository contains the pre-trained models for box structure generation, as well as the training/testing code for the generation model.

Details of the work can be found here.

A PyTorch implementation (currently with only the VAE part) is available at: https://github.com/kevin-kaixu/grass_pytorch.

Citation

If you find our work useful in your research, please consider citing:

@article {li_sig17,
    title = {GRASS: Generative Recursive Autoencoders for Shape Structures},
    author = {Jun Li and Kai Xu and Siddhartha Chaudhuri and Ersin Yumer and Hao Zhang and Leonidas Guibas},
    journal = {ACM Transactions on Graphics (Proc. of SIGGRAPH 2017)},
    volume = {36},
    number = {4},
    pages = {to appear},
    year = {2017}
}

Guide:

Training

Run trainTestVaeGan.m to train the vae-gan model on the provided chair dataset.

Testing

Use test_demo.m to generate shapes based on trained model. There is already a pre-trained model inside. The generated shape structures could be visulized in matlab.

For any questions, please contact Jun Li(jun.johnson.li@gmail.com) and Kai Xu(kevin.kai.xu@gmail.com).