Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Low face recognition accuracy for asian guys #302

Open
jinhuang415 opened this issue May 23, 2019 · 3 comments
Open

Low face recognition accuracy for asian guys #302

jinhuang415 opened this issue May 23, 2019 · 3 comments

Comments

@jinhuang415
Copy link

@jinhuang415 jinhuang415 commented May 23, 2019

We tried with our company employees (Asian faces) but sometimes the distance between 2 different faces are quite low (below 0.3), we can easily separate them with eyes but looks the face-api pre-trained model could not separate them apart, we tried some western faces and it can work well. So I am thinking if there are not so many Asian face samples in the training dataset so it may not perform very well towards them? If I have some Asian face dataset and want to train a new model, would you please advice how should I do the retrain? Thanks.

@jinhuang415 jinhuang415 changed the title Low accuracy for asian guys Low face recognition accuracy for asian guys May 23, 2019
@justadudewhohacks
Copy link
Owner

@justadudewhohacks justadudewhohacks commented May 27, 2019

Yes your assumption is correct, the author of dlib (the project where the model is from) also states somewhere in his blog I think, that there is a bias towards western faces. I think you can retrain the model using the corresponding dlib example, but afterwards the model weights have to be converted to a the format that tensorflow uses. But I can help you with the latter one, if you really want to retrain the model.

Other than that, I am planning to train an own face recognition model as well since I want to have a more web friendly and more efficient model for face-api.js. But I can't make any promises when that model will be included.

@dr1llc4t
Copy link

@dr1llc4t dr1llc4t commented Jul 9, 2019

Yes your assumption is correct, the author of dlib (the project where the model is from) also states somewhere in his blog I think, that there is a bias towards western faces. I think you can retrain the model using the corresponding dlib example, but afterwards the model weights have to be converted to a the format that tensorflow uses. But I can help you with the latter one, if you really want to retrain the model.

Other than that, I am planning to train an own face recognition model as well since I want to have a more web friendly and more efficient model for face-api.js. But I can't make any promises when that model will be included.

My project also encountered this problem and I had to use a traditional C/C++ face API. So I'm really looking forward to have this feature in the future. Also please please consider to bring liveness detection to face-api, so I can make sure it is a living person standing in front of a cam not a picture.

@mickwubs97
Copy link

@mickwubs97 mickwubs97 commented Mar 16, 2020

@dr1llc4t , hi, I am also interested in retrain the model with a new dataset, would you mind telling me how far have you gone? Or in which direction have you been working on? my email address is sxtgwzz@163.com. ( I don't know what language should I use here, so I just use the common one )

Thanks!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants