Permalink
Fetching contributors…
Cannot retrieve contributors at this time
788 lines (666 sloc) 42.2 KB

BOLT #8: Encrypted and Authenticated Transport

All communications between Lightning nodes is encrypted in order to provide confidentiality for all transcripts between nodes and is authenticated in order to avoid malicious interference. Each node has a known long-term identifier that is a public key on Bitcoin's secp256k1 curve. This long-term public key is used within the protocol to establish an encrypted and authenticated connection with peers, and also to authenticate any information advertised on behalf of a node.

Table of Contents

Cryptographic Messaging Overview

Prior to sending any Lightning messages, nodes MUST first initiate the cryptographic session state that is used to encrypt and authenticate all messages sent between nodes. The initialization of this cryptographic session state is completely distinct from any inner protocol message header or conventions.

The transcript between two nodes is separated into two distinct segments:

  1. Before any actual data transfer, both nodes participate in an authenticated key agreement handshake, which is based on the Noise Protocol Framework2.
  2. If the initial handshake is successful, then nodes enter the Lightning message exchange phase. In the Lightning message exchange phase, all messages are Authenticated Encryption with Associated Data (AEAD) ciphertexts.

Authenticated Key Agreement Handshake

The handshake chosen for the authenticated key exchange is Noise_XK. As a pre-message, the initiator must know the identity public key of the responder. This provides a degree of identity hiding for the responder, as its static public key is never transmitted during the handshake. Instead, authentication is achieved implicitly via a series of Elliptic-Curve Diffie-Hellman (ECDH) operations followed by a MAC check.

The authenticated key agreement (Noise_XK) is performed in three distinct steps (acts). During each act of the handshake the following occurs: some (possibly encrypted) keying material is sent to the other party; an ECDH is performed, based on exactly which act is being executed, with the result mixed into the current set of encryption keys (ck the chaining key and k the encryption key); and an AEAD payload with a zero-length cipher text is sent. As this payload has no length, only a MAC is sent across. The mixing of ECDH outputs into a hash digest forms an incremental TripleDH handshake.

Using the language of the Noise Protocol, e and s (both public keys) indicate possibly encrypted keying material, and es, ee, and se each indicate an ECDH operation between two keys. The handshake is laid out as follows:

    Noise_XK(s, rs):
       <- s
       ...
       -> e, es
       <- e, ee
       -> s, se

All of the handshake data sent across the wire, including the keying material, is incrementally hashed into a session-wide "handshake digest", h. Note that the handshake state h is never transmitted during the handshake; instead, digest is used as the Associated Data within the zero-length AEAD messages.

Authenticating each message sent ensures that a man-in-the-middle (MITM) hasn't modified or replaced any of the data sent as part of a handshake, as the MAC check would fail on the other side if so.

A successful check of the MAC by the receiver indicates implicitly that all authentication has been successful up to that point. If a MAC check ever fails during the handshake process, then the connection is to be immediately terminated.

Handshake Versioning

Each message sent during the initial handshake starts with a single leading byte, which indicates the version used for the current handshake. A version of 0 indicates that no change is necessary, while a non-zero version indicate that the client has deviated from the protocol originally specified within this document.

Clients MUST reject handshake attempts initiated with an unknown version.

Noise Protocol Instantiation

Concrete instantiations of the Noise Protocol require the definition of three abstract cryptographic objects: the hash function, the elliptic curve, and the AEAD cipher scheme. For Lightning, SHA-256 is chosen as the hash function, secp256k1 as the elliptic curve, and ChaChaPoly-1305 as the AEAD construction.

The composition of ChaCha20 and Poly1305 that are used MUST conform to RFC 75391.

The official protocol name for the Lightning variant of Noise is Noise_XK_secp256k1_ChaChaPoly_SHA256. The ASCII string representation of this value is hashed into a digest used to initialize the starting handshake state. If the protocol names of two endpoints differ, then the handshake process fails immediately.

Authenticated Key Exchange Handshake Specification

The handshake proceeds in three acts, taking 1.5 round trips. Each handshake is a fixed sized payload without any header or additional meta-data attached. The exact size of each act is as follows:

  • Act One: 50 bytes
  • Act Two: 50 bytes
  • Act Three: 66 bytes

Handshake State

Throughout the handshake process, each side maintains these variables:

  • ck: the chaining key. This value is the accumulated hash of all previous ECDH outputs. At the end of the handshake, ck is used to derive the encryption keys for Lightning messages.

  • h: the handshake hash. This value is the accumulated hash of all handshake data that has been sent and received so far during the handshake process.

  • temp_k1, temp_k2, temp_k3: the intermediate keys. These are used to encrypt and decrypt the zero-length AEAD payloads at the end of each handshake message.

  • e: a party's ephemeral keypair. For each session, a node MUST generate a new ephemeral key with strong cryptographic randomness.

  • s: a party's static public key (ls for local, rs for remote)

The following functions will also be referenced:

  • ECDH(rk, k): performs an Elliptic-Curve Diffie-Hellman operation using rk, which is a secp256k1 public key, and k, which is a valid private key within the finite field, as defined by the curve parameters

    • The returned value is the SHA256 of the DER-compressed format of the generated point.
  • HKDF(salt,ikm): a function defined in RFC 58693, evaluated with a zero-length info field

    • All invocations of HKDF implicitly return 64 bytes of cryptographic randomness using the extract-and-expand component of the HKDF.
  • encryptWithAD(k, n, ad, plaintext): outputs encrypt(k, n, ad, plaintext)

    • Where encrypt is an evaluation of ChaCha20-Poly1305 (IETF variant) with the passed arguments, with nonce n encoded as 32 zero bits, followed by a little-endian 64-bit value. Note: this follows the Noise Protocol convention, rather than our normal endian.
  • decryptWithAD(k, n, ad, ciphertext): outputs decrypt(k, n, ad, ciphertext)

    • Where decrypt is an evaluation of ChaCha20-Poly1305 (IETF variant) with the passed arguments, with nonce n encoded as 32 zero bits, followed by a little-endian 64-bit value.
  • generateKey(): generates and returns a fresh secp256k1 keypair

    • Where the object returned by generateKey has two attributes:
      • .pub, which returns an abstract object representing the public key
      • .priv, which represents the private key used to generate the public key
    • Where the object also has a single method:
      • .serializeCompressed()
  • a || b denotes the concatenation of two byte strings a and b

Handshake State Initialization

Before the start of Act One, both sides initialize their per-sessions state as follows:

  1. h = SHA-256(protocolName)

    • where protocolName = "Noise_XK_secp256k1_ChaChaPoly_SHA256" encoded as an ASCII string
  2. ck = h

  3. h = SHA-256(h || prologue)

    • where prologue is the ASCII string: lightning

As a concluding step, both sides mix the responder's public key into the handshake digest:

  • The initiating node mixes in the responding node's static public key serialized in Bitcoin's DER-compressed format:

    • h = SHA-256(h || rs.pub.serializeCompressed())
  • The responding node mixes in their local static public key serialized in Bitcoin's DER-compressed format:

    • h = SHA-256(h || ls.pub.serializeCompressed())

Handshake Exchange

Act One

    -> e, es

Act One is sent from initiator to responder. During Act One, the initiator attempts to satisfy an implicit challenge by the responder. To complete this challenge, the initiator must know the static public key of the responder.

The handshake message is exactly 50 bytes: 1 byte for the handshake version, 33 bytes for the compressed ephemeral public key of the initiator, and 16 bytes for the poly1305 tag.

Sender Actions:

  1. e = generateKey()
  2. h = SHA-256(h || e.pub.serializeCompressed())
    • The newly generated ephemeral key is accumulated into the running handshake digest.
  3. ss = ECDH(rs, e.priv)
    • The initiator performs an ECDH between its newly generated ephemeral key and the remote node's static public key.
  4. ck, temp_k1 = HKDF(ck, ss)
    • A new temporary encryption key is generated, which is used to generate the authenticating MAC.
  5. c = encryptWithAD(temp_k1, 0, h, zero)
    • where zero is a zero-length plaintext
  6. h = SHA-256(h || c)
    • Finally, the generated ciphertext is accumulated into the authenticating handshake digest.
  7. Send m = 0 || e.pub.serializeCompressed() || c to the responder over the network buffer.

Receiver Actions:

  1. Read exactly 50 bytes from the network buffer.
  2. Parse the read message (m) into v, re, and c:
    • where v is the first byte of m, re is the next 33 bytes of m, and c is the last 16 bytes of m
    • The raw bytes of the remote party's ephemeral public key (e) are to be deserialized into a point on the curve using affine coordinates as encoded by the key's serialized composed format.
  3. If v is an unrecognized handshake version, then the responder MUST abort the connection attempt.
  4. h = SHA-256(h || re.serializeCompressed())
    • The responder accumulates the initiator's ephemeral key into the authenticating handshake digest.
  5. ss = ECDH(re, s.priv)
    • The responder performs an ECDH between its static private key and the initiator's ephemeral public key.
  6. ck, temp_k1 = HKDF(ck, ss)
    • A new temporary encryption key is generated, which will shortly be used to check the authenticating MAC.
  7. p = decryptWithAD(temp_k1, 0, h, c)
    • If the MAC check in this operation fails, then the initiator does not know the responder's static public key. If this is the case, then the responder MUST terminate the connection without any further messages.
  8. h = SHA-256(h || c)
    • The received ciphertext is mixed into the handshake digest. This step serves to ensure the payload wasn't modified by a MITM.

Act Two

   <- e, ee

Act Two is sent from the responder to the initiator. Act Two will only take place if Act One was successful. Act One was successful if the responder was able to properly decrypt and check the MAC of the tag sent at the end of Act One.

The handshake is exactly 50 bytes: 1 byte for the handshake version, 33 bytes for the compressed ephemeral public key of the responder, and 16 bytes for the poly1305 tag.

Sender Actions:

  1. e = generateKey()
  2. h = SHA-256(h || e.pub.serializeCompressed())
    • The newly generated ephemeral key is accumulated into the running handshake digest.
  3. ss = ECDH(re, e.priv)
    • where re is the ephemeral key of the initiator, which was received during Act One
  4. ck, temp_k2 = HKDF(ck, ss)
    • A new temporary encryption key is generated, which is used to generate the authenticating MAC.
  5. c = encryptWithAD(temp_k2, 0, h, zero)
    • where zero is a zero-length plaintext
  6. h = SHA-256(h || c)
    • Finally, the generated ciphertext is accumulated into the authenticating handshake digest.
  7. Send m = 0 || e.pub.serializeCompressed() || c to the initiator over the network buffer.

Receiver Actions:

  1. Read exactly 50 bytes from the network buffer.
  2. Parse the read message (m) into v, re, and c:
    • where v is the first byte of m, re is the next 33 bytes of m, and c is the last 16 bytes of m.
  3. If v is an unrecognized handshake version, then the responder MUST abort the connection attempt.
  4. h = SHA-256(h || re.serializeCompressed())
  5. ss = ECDH(re, e.priv)
    • where re is the responder's ephemeral public key
    • The raw bytes of the remote party's ephemeral public key (re) are to be deserialized into a point on the curve using affine coordinates as encoded by the key's serialized composed format.
  6. ck, temp_k2 = HKDF(ck, ss)
    • A new temporary encryption key is generated, which is used to generate the authenticating MAC.
  7. p = decryptWithAD(temp_k2, 0, h, c)
    • If the MAC check in this operation fails, then the initiator MUST terminate the connection without any further messages.
  8. h = SHA-256(h || c)
    • The received ciphertext is mixed into the handshake digest. This step serves to ensure the payload wasn't modified by a MITM.

Act Three

   -> s, se

Act Three is the final phase in the authenticated key agreement described in this section. This act is sent from the initiator to the responder as a concluding step. Act Three is executed if and only if Act Two was successful. During Act Three, the initiator transports its static public key to the responder encrypted with strong forward secrecy, using the accumulated HKDF derived secret key at this point of the handshake.

The handshake is exactly 66 bytes: 1 byte for the handshake version, 33 bytes for the ephemeral public key encrypted with the ChaCha20 stream cipher, 16 bytes for the encrypted public key's tag generated via the AEAD construction, and 16 bytes for a final authenticating tag.

Sender Actions:

  1. c = encryptWithAD(temp_k2, 1, h, s.pub.serializeCompressed())
    • where s is the static public key of the initiator
  2. h = SHA-256(h || c)
  3. ss = ECDH(re, s.priv)
    • where re is the ephemeral public key of the responder
  4. ck, temp_k3 = HKDF(ck, ss)
    • The final intermediate shared secret is mixed into the running chaining key.
  5. t = encryptWithAD(temp_k3, 0, h, zero)
    • where zero is a zero-length plaintext
  6. sk, rk = HKDF(ck, zero)
    • where zero is a zero-length plaintext, sk is the key to be used by the initiator to encrypt messages to the responder, and rk is the key to be used by the initiator to decrypt messages sent by the responder
    • The final encryption keys, to be used for sending and receiving messages for the duration of the session, are generated.
  7. rn = 0, sn = 0
    • The sending and receiving nonces are initialized to 0.
  8. Send m = 0 || c || t over the network buffer.

Receiver Actions:

  1. Read exactly 66 bytes from the network buffer.
  2. Parse the read message (m) into v, c, and t:
    • where v is the first byte of m, c is the next 49 bytes of m, and t is the last 16 bytes of m
  3. If v is an unrecognized handshake version, then the responder MUST abort the connection attempt.
  4. rs = decryptWithAD(temp_k2, 1, h, c)
    • At this point, the responder has recovered the static public key of the initiator.
  5. h = SHA-256(h || c)
  6. ss = ECDH(rs, e.priv)
    • where e is the responder's original ephemeral key
  7. ck, temp_k3 = HKDF(ck, ss)
  8. p = decryptWithAD(temp_k3, 0, h, t)
    • If the MAC check in this operation fails, then the responder MUST terminate the connection without any further messages.
  9. rk, sk = HKDF(ck, zero)
    • where zero is a zero-length plaintext, rk is the key to be used by the responder to decrypt the messages sent by the initiator, and sk is the key to be used by the responder to encrypt messages to the initiator
    • The final encryption keys, to be used for sending and receiving messages for the duration of the session, are generated.
  10. rn = 0, sn = 0
    • The sending and receiving nonces are initialized to 0.

Lightning Message Specification

At the conclusion of Act Three, both sides have derived the encryption keys, which will be used to encrypt and decrypt messages for the remainder of the session.

The actual Lightning protocol messages are encapsulated within AEAD ciphertexts. Each message is prefixed with another AEAD ciphertext, which encodes the total length of the following Lightning message (not including its MAC).

The maximum size of any Lightning message MUST NOT exceed 65535 bytes. A maximum size of 65535 simplifies testing, makes memory management easier, and helps mitigate memory-exhaustion attacks.

In order to make traffic analysis more difficult, the length prefix for all encrypted Lightning messages is also encrypted. Additionally a 16-byte Poly-1305 tag is added to the encrypted length prefix in order to ensure that the packet length hasn't been modified when in-flight and also to avoid creating a decryption oracle.

The structure of packets on the wire resembles the following:

+-------------------------------
|2-byte encrypted message length|
+-------------------------------
|  16-byte MAC of the encrypted |
|        message length         |
+-------------------------------
|                               |
|                               |
|     encrypted Lightning       |
|            message            |
|                               |
+-------------------------------
|     16-byte MAC of the        |
|      Lightning message        |
+-------------------------------

The prefixed message length is encoded as a 2-byte big-endian integer, for a total maximum packet length of 2 + 16 + 65535 + 16 = 65569 bytes.

Encrypting and Sending Messages

In order to encrypt and send a Lightning message (m) to the network stream, given a sending key (sk) and a nonce (sn), the following steps are completed:

  1. Let l = len(m).
    • where len obtains the length in bytes of the Lightning message
  2. Serialize l into 2 bytes encoded as a big-endian integer.
  3. Encrypt l (using ChaChaPoly-1305, sn, and sk), to obtain lc (18 bytes)
    • The nonce sn is encoded as a 96-bit little-endian number. As the decoded nonce is 64 bits, the 96-bit nonce is encoded as: 32 bits of leading 0s followed by a 64-bit value.
      • The nonce sn MUST be incremented after this step.
    • A zero-length byte slice is to be passed as the AD (associated data).
  4. Finally, encrypt the message itself (m) using the same procedure used to encrypt the length prefix. Let encrypted ciphertext be known as c.
    • The nonce sn MUST be incremented after this step.
  5. Send lc || c over the network buffer.

Receiving and Decrypting Messages

In order to decrypt the next message in the network stream, the following steps are completed:

  1. Read exactly 18 bytes from the network buffer.
  2. Let the encrypted length prefix be known as lc.
  3. Decrypt lc (using ChaCha20-Poly1305, rn, and rk), to obtain the size of the encrypted packet l.
    • A zero-length byte slice is to be passed as the AD (associated data).
    • The nonce rn MUST be incremented after this step.
  4. Read exactly l+16 bytes from the network buffer, and let the bytes be known as c.
  5. Decrypt c (using ChaCha20-Poly1305, rn, and rk), to obtain decrypted plaintext packet p.
    • The nonce rn MUST be incremented after this step.

Lightning Message Key Rotation

Changing keys regularly and forgetting previous keys is useful to prevent the decryption of old messages, in the case of later key leakage (i.e. backwards secrecy).

Key rotation is performed for each key (sk and rk) individually. A key is to be rotated after a party encrypts or decrypts 1000 times with it (i.e. every 500 messages). This can be properly accounted for by rotating the key once the nonce dedicated to it exceeds 1000.

Key rotation for a key k is performed according to the following steps:

  1. Let ck be the chaining key obtained at the end of Act Three.
  2. ck', k' = HKDF(ck, k)
  3. Reset the nonce for the key to n = 0.
  4. k = k'
  5. ck = ck'

Security Considerations

It is strongly recommended that existing, commonly-used, validated libraries be used for encryption and decryption, to avoid the many possible implementation pitfalls.

Appendix A: Transport Test Vectors

To make a repeatable test handshake, the following specifies what generateKey() will return (i.e. the value for e.priv) for each side. Note that this is a violation of the spec, which requires randomness.

Initiator Tests

The initiator SHOULD produce the given output when fed this input. The comments reflect internal states, for debugging purposes.

    name: transport-initiator successful handshake
    rs.pub: 0x028d7500dd4c12685d1f568b4c2b5048e8534b873319f3a8daa612b469132ec7f7
    ls.priv: 0x1111111111111111111111111111111111111111111111111111111111111111
    ls.pub: 0x034f355bdcb7cc0af728ef3cceb9615d90684bb5b2ca5f859ab0f0b704075871aa
    e.priv: 0x1212121212121212121212121212121212121212121212121212121212121212
    e.pub: 0x036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f7
    # Act One
    # h=0x9e0e7de8bb75554f21db034633de04be41a2b8a18da7a319a03c803bf02b396c
    # ss=0x1e2fb3c8fe8fb9f262f649f64d26ecf0f2c0a805a767cf02dc2d77a6ef1fdcc3
    # HKDF(0x2640f52eebcd9e882958951c794250eedb28002c05d7dc2ea0f195406042caf1,0x1e2fb3c8fe8fb9f262f649f64d26ecf0f2c0a805a767cf02dc2d77a6ef1fdcc3)
    # ck,temp_k1=0xb61ec1191326fa240decc9564369dbb3ae2b34341d1e11ad64ed89f89180582f,0xe68f69b7f096d7917245f5e5cf8ae1595febe4d4644333c99f9c4a1282031c9f
    # encryptWithAD(0xe68f69b7f096d7917245f5e5cf8ae1595febe4d4644333c99f9c4a1282031c9f, 0x000000000000000000000000, 0x9e0e7de8bb75554f21db034633de04be41a2b8a18da7a319a03c803bf02b396c, <empty>)
    # c=0df6086551151f58b8afe6c195782c6a
    # h=0x9d1ffbb639e7e20021d9259491dc7b160aab270fb1339ef135053f6f2cebe9ce
    output: 0x00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a
    # Act Two
    input: 0x0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae
    # re=0x02466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f27
    # h=0x38122f669819f906000621a14071802f93f2ef97df100097bcac3ae76c6dc0bf
    # ss=0xc06363d6cc549bcb7913dbb9ac1c33fc1158680c89e972000ecd06b36c472e47
    # HKDF(0xb61ec1191326fa240decc9564369dbb3ae2b34341d1e11ad64ed89f89180582f,0xc06363d6cc549bcb7913dbb9ac1c33fc1158680c89e972000ecd06b36c472e47)
    # ck,temp_k2=0xe89d31033a1b6bf68c07d22e08ea4d7884646c4b60a9528598ccb4ee2c8f56ba,0x908b166535c01a935cf1e130a5fe895ab4e6f3ef8855d87e9b7581c4ab663ddc
    # decryptWithAD(0x908b166535c01a935cf1e130a5fe895ab4e6f3ef8855d87e9b7581c4ab663ddc, 0x000000000000000000000000, 0x38122f669819f906000621a14071802f93f2ef97df100097bcac3ae76c6dc0bf, 0x6e2470b93aac583c9ef6eafca3f730ae)
    # h=0x90578e247e98674e661013da3c5c1ca6a8c8f48c90b485c0dfa1494e23d56d72
    # Act Three
    # encryptWithAD(0x908b166535c01a935cf1e130a5fe895ab4e6f3ef8855d87e9b7581c4ab663ddc, 0x000000000100000000000000, 0x90578e247e98674e661013da3c5c1ca6a8c8f48c90b485c0dfa1494e23d56d72, 0x034f355bdcb7cc0af728ef3cceb9615d90684bb5b2ca5f859ab0f0b704075871aa)
    # c=0xb9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c3822
    # h=0x5dcb5ea9b4ccc755e0e3456af3990641276e1d5dc9afd82f974d90a47c918660
    # ss=0xb36b6d195982c5be874d6d542dc268234379e1ae4ff1709402135b7de5cf0766
    # HKDF(0xe89d31033a1b6bf68c07d22e08ea4d7884646c4b60a9528598ccb4ee2c8f56ba,0xb36b6d195982c5be874d6d542dc268234379e1ae4ff1709402135b7de5cf0766)
    # ck,temp_k3=0x919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01,0x981a46c820fb7a241bc8184ba4bb1f01bcdfafb00dde80098cb8c38db9141520
    # encryptWithAD(0x981a46c820fb7a241bc8184ba4bb1f01bcdfafb00dde80098cb8c38db9141520, 0x000000000000000000000000, 0x5dcb5ea9b4ccc755e0e3456af3990641276e1d5dc9afd82f974d90a47c918660, <empty>)
    # t=0x8dc68b1c466263b47fdf31e560e139ba
    output: 0x00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba
    # HKDF(0x919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01,zero)
    output: sk,rk=0x969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9,0xbb9020b8965f4df047e07f955f3c4b88418984aadc5cdb35096b9ea8fa5c3442

    name: transport-initiator act2 short read test
    rs.pub: 0x028d7500dd4c12685d1f568b4c2b5048e8534b873319f3a8daa612b469132ec7f7
    ls.priv: 0x1111111111111111111111111111111111111111111111111111111111111111
    ls.pub: 0x034f355bdcb7cc0af728ef3cceb9615d90684bb5b2ca5f859ab0f0b704075871aa
    e.priv: 0x1212121212121212121212121212121212121212121212121212121212121212
    e.pub: 0x036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f7
    output: 0x00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a
    # Act Two
    input: 0x0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730
    output: ERROR (ACT2_READ_FAILED)

    name: transport-initiator act2 bad version test
    rs.pub: 0x028d7500dd4c12685d1f568b4c2b5048e8534b873319f3a8daa612b469132ec7f7
    ls.priv: 0x1111111111111111111111111111111111111111111111111111111111111111
    ls.pub: 0x034f355bdcb7cc0af728ef3cceb9615d90684bb5b2ca5f859ab0f0b704075871aa
    e.priv: 0x1212121212121212121212121212121212121212121212121212121212121212
    e.pub: 0x036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f7
    output: 0x00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a
    # Act Two
    input: 0x0102466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae
    output: ERROR (ACT2_BAD_VERSION 1)

    name: transport-initiator act2 bad key serialization test
    rs.pub: 0x028d7500dd4c12685d1f568b4c2b5048e8534b873319f3a8daa612b469132ec7f7
    ls.priv: 0x1111111111111111111111111111111111111111111111111111111111111111
    ls.pub: 0x034f355bdcb7cc0af728ef3cceb9615d90684bb5b2ca5f859ab0f0b704075871aa
    e.priv: 0x1212121212121212121212121212121212121212121212121212121212121212
    e.pub: 0x036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f7
    output: 0x00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a
    # Act Two
    input: 0x0004466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae
    output: ERROR (ACT2_BAD_PUBKEY)

    name: transport-initiator act2 bad MAC test
    rs.pub: 0x028d7500dd4c12685d1f568b4c2b5048e8534b873319f3a8daa612b469132ec7f7
    ls.priv: 0x1111111111111111111111111111111111111111111111111111111111111111
    ls.pub: 0x034f355bdcb7cc0af728ef3cceb9615d90684bb5b2ca5f859ab0f0b704075871aa
    e.priv: 0x1212121212121212121212121212121212121212121212121212121212121212
    e.pub: 0x036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f7
    output: 0x00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a
    # Act Two
    input: 0x0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730af
    output: ERROR (ACT2_BAD_TAG)

Responder Tests

The responder SHOULD produce the given output when fed this input.

    name: transport-responder successful handshake
    ls.priv=2121212121212121212121212121212121212121212121212121212121212121
    ls.pub=028d7500dd4c12685d1f568b4c2b5048e8534b873319f3a8daa612b469132ec7f7
    e.priv=0x2222222222222222222222222222222222222222222222222222222222222222
    e.pub=0x02466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f27
    # Act One
    input: 0x00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a
    # re=0x036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f7
    # h=0x9e0e7de8bb75554f21db034633de04be41a2b8a18da7a319a03c803bf02b396c
    # ss=0x1e2fb3c8fe8fb9f262f649f64d26ecf0f2c0a805a767cf02dc2d77a6ef1fdcc3
    # HKDF(0x2640f52eebcd9e882958951c794250eedb28002c05d7dc2ea0f195406042caf1,0x1e2fb3c8fe8fb9f262f649f64d26ecf0f2c0a805a767cf02dc2d77a6ef1fdcc3)
    # ck,temp_k1=0xb61ec1191326fa240decc9564369dbb3ae2b34341d1e11ad64ed89f89180582f,0xe68f69b7f096d7917245f5e5cf8ae1595febe4d4644333c99f9c4a1282031c9f
    # decryptWithAD(0xe68f69b7f096d7917245f5e5cf8ae1595febe4d4644333c99f9c4a1282031c9f, 0x000000000000000000000000, 0x9e0e7de8bb75554f21db034633de04be41a2b8a18da7a319a03c803bf02b396c, 0x0df6086551151f58b8afe6c195782c6a)
    # h=0x9d1ffbb639e7e20021d9259491dc7b160aab270fb1339ef135053f6f2cebe9ce
    # Act Two
    # e.pub=0x02466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f27 e.priv=0x2222222222222222222222222222222222222222222222222222222222222222
    # h=0x38122f669819f906000621a14071802f93f2ef97df100097bcac3ae76c6dc0bf
    # ss=0xc06363d6cc549bcb7913dbb9ac1c33fc1158680c89e972000ecd06b36c472e47
    # HKDF(0xb61ec1191326fa240decc9564369dbb3ae2b34341d1e11ad64ed89f89180582f,0xc06363d6cc549bcb7913dbb9ac1c33fc1158680c89e972000ecd06b36c472e47)
    # ck,temp_k2=0xe89d31033a1b6bf68c07d22e08ea4d7884646c4b60a9528598ccb4ee2c8f56ba,0x908b166535c01a935cf1e130a5fe895ab4e6f3ef8855d87e9b7581c4ab663ddc
    # encryptWithAD(0x908b166535c01a935cf1e130a5fe895ab4e6f3ef8855d87e9b7581c4ab663ddc, 0x000000000000000000000000, 0x38122f669819f906000621a14071802f93f2ef97df100097bcac3ae76c6dc0bf, <empty>)
    # c=0x6e2470b93aac583c9ef6eafca3f730ae
    # h=0x90578e247e98674e661013da3c5c1ca6a8c8f48c90b485c0dfa1494e23d56d72
    output: 0x0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae
    # Act Three
    input: 0x00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba
    # decryptWithAD(0x908b166535c01a935cf1e130a5fe895ab4e6f3ef8855d87e9b7581c4ab663ddc, 0x000000000100000000000000, 0x90578e247e98674e661013da3c5c1ca6a8c8f48c90b485c0dfa1494e23d56d72, 0xb9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c3822)
    # rs=0x034f355bdcb7cc0af728ef3cceb9615d90684bb5b2ca5f859ab0f0b704075871aa
    # h=0x5dcb5ea9b4ccc755e0e3456af3990641276e1d5dc9afd82f974d90a47c918660
    # ss=0xb36b6d195982c5be874d6d542dc268234379e1ae4ff1709402135b7de5cf0766
    # HKDF(0xe89d31033a1b6bf68c07d22e08ea4d7884646c4b60a9528598ccb4ee2c8f56ba,0xb36b6d195982c5be874d6d542dc268234379e1ae4ff1709402135b7de5cf0766)
    # ck,temp_k3=0x919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01,0x981a46c820fb7a241bc8184ba4bb1f01bcdfafb00dde80098cb8c38db9141520
    # decryptWithAD(0x981a46c820fb7a241bc8184ba4bb1f01bcdfafb00dde80098cb8c38db9141520, 0x000000000000000000000000, 0x5dcb5ea9b4ccc755e0e3456af3990641276e1d5dc9afd82f974d90a47c918660, 0x8dc68b1c466263b47fdf31e560e139ba)
    # HKDF(0x919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01,zero)
    output: rk,sk=0x969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9,0xbb9020b8965f4df047e07f955f3c4b88418984aadc5cdb35096b9ea8fa5c3442

    name: transport-responder act1 short read test
    ls.priv=2121212121212121212121212121212121212121212121212121212121212121
    ls.pub=028d7500dd4c12685d1f568b4c2b5048e8534b873319f3a8daa612b469132ec7f7
    e.priv=0x2222222222222222222222222222222222222222222222222222222222222222
    e.pub=0x02466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f27
    # Act One
    input: 0x00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c
    output: ERROR (ACT1_READ_FAILED)

    name: transport-responder act1 bad version test
    ls.priv=2121212121212121212121212121212121212121212121212121212121212121
    ls.pub=028d7500dd4c12685d1f568b4c2b5048e8534b873319f3a8daa612b469132ec7f7
    e.priv=0x2222222222222222222222222222222222222222222222222222222222222222
    e.pub=0x02466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f27
    # Act One
    input: 0x01036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a
    output: ERROR (ACT1_BAD_VERSION)

    name: transport-responder act1 bad key serialization test
    ls.priv=2121212121212121212121212121212121212121212121212121212121212121
    ls.pub=028d7500dd4c12685d1f568b4c2b5048e8534b873319f3a8daa612b469132ec7f7
    e.priv=0x2222222222222222222222222222222222222222222222222222222222222222
    e.pub=0x02466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f27
    # Act One
    input: 0x00046360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a
    output: ERROR (ACT1_BAD_PUBKEY)

    name: transport-responder act1 bad MAC test
    ls.priv=2121212121212121212121212121212121212121212121212121212121212121
    ls.pub=028d7500dd4c12685d1f568b4c2b5048e8534b873319f3a8daa612b469132ec7f7
    e.priv=0x2222222222222222222222222222222222222222222222222222222222222222
    e.pub=0x02466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f27
    # Act One
    input: 0x00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6b
    output: ERROR (ACT1_BAD_TAG)

    name: transport-responder act3 bad version test
    ls.priv=2121212121212121212121212121212121212121212121212121212121212121
    ls.pub=028d7500dd4c12685d1f568b4c2b5048e8534b873319f3a8daa612b469132ec7f7
    e.priv=0x2222222222222222222222222222222222222222222222222222222222222222
    e.pub=0x02466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f27
    # Act One
    input: 0x00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a
    # Act Two
    output: 0x0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae
    # Act Three
    input: 0x01b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba
    output: ERROR (ACT3_BAD_VERSION 1)

    name: transport-responder act3 short read test
    ls.priv=2121212121212121212121212121212121212121212121212121212121212121
    ls.pub=028d7500dd4c12685d1f568b4c2b5048e8534b873319f3a8daa612b469132ec7f7
    e.priv=0x2222222222222222222222222222222222222222222222222222222222222222
    e.pub=0x02466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f27
    # Act One
    input: 0x00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a
    # Act Two
    output: 0x0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae
    # Act Three
    input: 0x00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139
    output: ERROR (ACT3_READ_FAILED)

    name: transport-responder act3 bad MAC for ciphertext test
    ls.priv=2121212121212121212121212121212121212121212121212121212121212121
    ls.pub=028d7500dd4c12685d1f568b4c2b5048e8534b873319f3a8daa612b469132ec7f7
    e.priv=0x2222222222222222222222222222222222222222222222222222222222222222
    e.pub=0x02466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f27
    # Act One
    input: 0x00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a
    # Act Two
    output: 0x0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae
    # Act Three
    input: 0x00c9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba
    output: ERROR (ACT3_BAD_CIPHERTEXT)

    name: transport-responder act3 bad rs test
    ls.priv=2121212121212121212121212121212121212121212121212121212121212121
    ls.pub=028d7500dd4c12685d1f568b4c2b5048e8534b873319f3a8daa612b469132ec7f7
    e.priv=0x2222222222222222222222222222222222222222222222222222222222222222
    e.pub=0x02466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f27
    # Act One
    input: 0x00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a
    # Act Two
    output: 0x0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae
    # Act Three
    input: 0x00bfe3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa2235536ad09a8ee351870c2bb7f78b754a26c6cef79a98d25139c856d7efd252c2ae73c
    # decryptWithAD(0x908b166535c01a935cf1e130a5fe895ab4e6f3ef8855d87e9b7581c4ab663ddc, 0x000000000000000000000001, 0x90578e247e98674e661013da3c5c1ca6a8c8f48c90b485c0dfa1494e23d56d72, 0xd7fedc211450dd9602b41081c9bd05328b8bf8c0238880f7b7cb8a34bb6d8354081e8d4b81887fae47a74fe8aab3008653)
    # rs=0x044f355bdcb7cc0af728ef3cceb9615d90684bb5b2ca5f859ab0f0b704075871aa
    output: ERROR (ACT3_BAD_PUBKEY)

    name: transport-responder act3 bad MAC test
    ls.priv=2121212121212121212121212121212121212121212121212121212121212121
    ls.pub=028d7500dd4c12685d1f568b4c2b5048e8534b873319f3a8daa612b469132ec7f7
    e.priv=0x2222222222222222222222222222222222222222222222222222222222222222
    e.pub=0x02466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f27
    # Act One
    input: 0x00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a
    # Act Two
    output: 0x0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae
    # Act Three
    input: 0x00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139bb
    output: ERROR (ACT3_BAD_TAG)

Message Encryption Tests

In this test, the initiator sends length 5 messages containing "hello" 1001 times. Only six example outputs are shown, for brevity and to test two key rotations:

name: transport-message test
ck=0x919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01
sk=0x969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9
rk=0xbb9020b8965f4df047e07f955f3c4b88418984aadc5cdb35096b9ea8fa5c3442
# encrypt l: cleartext=0x0005, AD=NULL, sn=0x000000000000000000000000, sk=0x969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9 => 0xcf2b30ddf0cf3f80e7c35a6e6730b59fe802
# encrypt m: cleartext=0x68656c6c6f, AD=NULL, sn=0x000000000100000000000000, sk=0x969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9 => 0x473180f396d88a8fb0db8cbcf25d2f214cf9ea1d95
output 0: 0xcf2b30ddf0cf3f80e7c35a6e6730b59fe802473180f396d88a8fb0db8cbcf25d2f214cf9ea1d95
# encrypt l: cleartext=0x0005, AD=NULL, sn=0x000000000200000000000000, sk=0x969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9 => 0x72887022101f0b6753e0c7de21657d35a4cb
# encrypt m: cleartext=0x68656c6c6f, AD=NULL, sn=0x000000000300000000000000, sk=0x969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9 => 0x2a1f5cde2650528bbc8f837d0f0d7ad833b1a256a1
output 1: 0x72887022101f0b6753e0c7de21657d35a4cb2a1f5cde2650528bbc8f837d0f0d7ad833b1a256a1
# 0xcc2c6e467efc8067720c2d09c139d1f77731893aad1defa14f9bf3c48d3f1d31, 0x3fbdc101abd1132ca3a0ae34a669d8d9ba69a587e0bb4ddd59524541cf4813d8 = HKDF(0x919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01, 0x969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9)
# 0xcc2c6e467efc8067720c2d09c139d1f77731893aad1defa14f9bf3c48d3f1d31, 0x3fbdc101abd1132ca3a0ae34a669d8d9ba69a587e0bb4ddd59524541cf4813d8 = HKDF(0x919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01, 0x969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9)
output 500: 0x178cb9d7387190fa34db9c2d50027d21793c9bc2d40b1e14dcf30ebeeeb220f48364f7a4c68bf8
output 501: 0x1b186c57d44eb6de4c057c49940d79bb838a145cb528d6e8fd26dbe50a60ca2c104b56b60e45bd
# 0x728366ed68565dc17cf6dd97330a859a6a56e87e2beef3bd828a4c4a54d8df06, 0x9e0477f9850dca41e42db0e4d154e3a098e5a000d995e421849fcd5df27882bd = HKDF(0xcc2c6e467efc8067720c2d09c139d1f77731893aad1defa14f9bf3c48d3f1d31, 0x3fbdc101abd1132ca3a0ae34a669d8d9ba69a587e0bb4ddd59524541cf4813d8)
# 0x728366ed68565dc17cf6dd97330a859a6a56e87e2beef3bd828a4c4a54d8df06, 0x9e0477f9850dca41e42db0e4d154e3a098e5a000d995e421849fcd5df27882bd = HKDF(0xcc2c6e467efc8067720c2d09c139d1f77731893aad1defa14f9bf3c48d3f1d31, 0x3fbdc101abd1132ca3a0ae34a669d8d9ba69a587e0bb4ddd59524541cf4813d8)
output 1000: 0x4a2f3cc3b5e78ddb83dcb426d9863d9d9a723b0337c89dd0b005d89f8d3c05c52b76b29b740f09
output 1001: 0x2ecd8c8a5629d0d02ab457a0fdd0f7b90a192cd46be5ecb6ca570bfc5e268338b1a16cf4ef2d36

Acknowledgments

TODO(roasbeef); fin

References

  1. https://tools.ietf.org/html/rfc7539
  2. http://noiseprotocol.org/noise.html
  3. https://tools.ietf.org/html/rfc5869

Authors

FIXME

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.