Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 

README.md

LeadsheetGAN 自動簡譜生成 🎵

Lead Sheet GAN is a task to automatically generate lead sheets. There are several types we use in generation.

  • Unconditional generation: generate melody and chords from nothing
  • Conditional generation: generate melody-conditioned chord or chord-conditioned melody

We train the model with TheoryTab (TT) dataset to generate pop song style leadsheets.

Sample results are available here.

Papers

Lead sheet generation and arrangement by conditional generative adversarial network
Hao-Min Liu and Yi-Hsuan Yang, to appear in International Conference on Machine Learning and Applications (ICMLA), 2018. [arxiv]

Lead sheet and Multi-track Piano-roll generation using MuseGAN
Hao-Min Liu, Hao-Wen Dong, Wen-Yi Hsiao and Yi-Hsuan Yang, in GPU Technology Conference (GTC), 2018. [poster]

Usage

Step 1: adjust training or testing modes in main.py

import tensorflow as tf
from musegan.core import MuseGAN
from musegan.components import NowbarHybrid
from config import *

# Initialize a tensorflow session

""" Create TensorFlow Session """
with tf.Session() as sess:
    
    # === Prerequisites ===
    # Step 1 - Initialize the training configuration        
    t_config = TrainingConfig
    t_config.exp_name = 'exps/nowbar_hybrid'        

    # Step 2 - Select the desired model
    model = NowbarHybrid(NowBarHybridConfig)
    
    # Step 3 - Initialize the input data object
    input_data = InputDataNowBarHybrid(model)
    
    # Step 4 - Load training data
    path_x_train_bar = 'tra_X_bars'
    path_y_train_bar = 'tra_y_bars'
    input_data.add_data_sa(path_x_train_bar, path_y_train_bar, 'train') # x: input, y: conditional feature
    
    # Step 5 - Initialize a museGAN object
    musegan = MuseGAN(sess, t_config, model)
    
    # === Training ===
    musegan.train(input_data)

    # === Load a Pretrained Model ===
    musegan.load(musegan.dir_ckpt)

    # === Generate Samples ===
    path_x_test_bar = 'val_X_bars'
    path_y_test_bar = 'val_y_bars'
    input_data.add_data_sa(path_x_test_bar, path_y_test_bar, key='test')
    musegan.gen_test(input_data, is_eval=True)

Step 2: run store_sa.py

Step 3: run main.py

About

lead sheet generation via convolutional GAN 自動簡譜作曲

Resources

Releases

No releases published

Packages

No packages published

Languages

You can’t perform that action at this time.