Skip to content

Latest commit

 

History

History
239 lines (160 loc) · 9.45 KB

objformat.rst

File metadata and controls

239 lines (160 loc) · 9.45 KB

Spectrum, Image and Cube format

Attributes

Spectrum, Image and Cube objects all have the following items, where O denotes the name of the object:

Component Description
O.filename A FITS filename if the data were loaded from a FITS file
O.primary_header A FITS primary header instance
O.wcs World coordinate spatial information (WCS <mpdaf.obj.WCS> object)
O.wave World coordinate spectral information (WaveCoord <mpdaf.obj.WaveCoord> object)
O.shape An array of the dimensions of the cube
O.data A numpy masked array of pixel values
O.data_header A FITS data header instance
O.unit The physical units of the data values
O.dtype The data-type of the data array (int, float)
O.var An optional numpy masked array of pixel variances
O.mask An array of the masked state of each pixel
O.ndim The number of dimensions in the data, variance and mask arrays

Masked arrays are arrays that can have missing or invalid entries. The numpy.ma module provides a nearly work-alike replacement for numpy that supports data arrays with masks. See the DataArray <mpdaf.obj.DataArray> documentation for more details.

When an object is constructed from a MUSE FITS file, O.data will contain the DATA extension, O.var will contain the STAT extension and O.mask will contain the DQ extension if it exists. A DQ extension contains the pixel data quality. By default all bad pixels are masked. But it is possible for the user to create his mask by using the :ref:`euro3D`.

Indexing

The format of each numpy array follows the indexing used by Python to handle 2D and 3D arrays. For an MPDAF cube C, the pixel in the bottom-lower-left corner is C[0,0,0] and pixel C[k,p,q] refers to the horizontal position q, the vertical position p, and the spectral position k, as follows:

_static/cube/gridcube.jpg

In total, this cube C contains nq pixels in the horizontal direction, np pixels in the vertical direction and nk channels in the spectral direction. In the cube, each numpy masked array has 3 dimensions, array[k,p,q], where k is the spectral axis, and p and q are the spatial axes:

.. ipython::
  :okwarning:

  In [2]: from mpdaf.obj import Cube

  # data array is read from the file (extension number 0)
  In [1]: cube = Cube(filename='sdetect/minicube.fits')

  # The 3 dimensions of the cube:
  In [2]: cube.shape

  In [2]: cube.data.shape

  In [2]: cube.var.shape

  In [2]: cube.mask.shape

Cube[k,p,q] <mpdaf.obj.Cube.__getitem__> returns the value of Cube.data[k,p,q]:

.. ipython::

  In [2]: cube[3659, 8, 28]

Similarly Cube[k,p,q] = value <mpdaf.obj.Cube.__setitem__> sets the value of Cube.data[k,p,q], and Cube[k1:k2,p1:p2,q1:q2] = array <mpdaf.obj.Cube.__setitem__> sets the corresponding subset of Cube.data. Finally Cube[k1:k2,p1:p2,q1:q2] <mpdaf.obj.Cube.__getitem__> returns a sub-cube, as demonstrated in the following example:

.. ipython::

  In [2]: cube.info()

  In [2]: cube[3000:,10:20,25:40].info()

Likewise, Cube[k,:,:] <mpdaf.obj.Cube.__getitem__> returns an Image, as demonstrated below:

.. ipython::

  In [3]: ima1 = cube[1000, :, :]

  In [4]: plt.figure()

  @savefig ObjFormatIma1.png width=2.3in
  In [5]: ima1.plot(colorbar='v', title = '$\lambda$ = %.1f (%s)' %(cube.wave.coord(1000), cube.wave.unit))

  In [6]: ima2 = cube[3000, :, :]

  In [7]: plt.figure()

  @savefig ObjFormatIma2.png width=2.3in
  In [8]: ima2.plot(colorbar='v', title = '$\lambda$ = %.1f (%s)' %(cube.wave.coord(3000), cube.wave.unit))

  In [7]: plt.figure()

  @savefig ObjFormatZommIma2.png width=2.3in
  In [8]: ima2[5:25, 15:35].plot(colorbar='v',title = 'Zoom $\lambda$ = %.1f (%s)' %(cube.wave.coord(3000), cube.wave.unit))

In the Image objects extracted from the cube, Image[p1:p2,q1:q2] <mpdaf.obj.Image.__getitem__> returns a sub-image, Image[p,q] <mpdaf.obj.Image.__getitem__> returns the value of pixel (p,q), Image[p,q] = value <mpdaf.obj.Image.__setitem__> sets value in Image.data[p,q], and Image[p1:p2,q1:q2] = array <mpdaf.obj.Image.__setitem__> sets the corresponding part of Image.data.

Finally, Cube[:,p,q] <mpdaf.obj.Cube.__getitem__> returns a Spectrum:

.. ipython::

  In [5]: spe = cube[:, 8, 28]

  In [5]: import astropy.units as u

  In [5]: from mpdaf.obj import deg2sexa

  In [5]: coord_sky = cube.wcs.pix2sky([8, 28], unit=u.deg)

  In [6]: dec, ra = deg2sexa(coord_sky)[0]

  In [6]: plt.figure()

  @savefig ObjFormatSpe.png width=3.5in
  In [8]: spe.plot(title = 'Spectrum ra=%s dec=%s' %(ra, dec))

  In [6]: plt.figure()

  @savefig ObjFormatZoomSpe.png width=3.5in
  In [8]: spe[1640:2440].plot(title = 'Zoom Spectrum ra=%s dec=%s' %(ra, dec))


Getters and setters

Cube.get_step <mpdaf.obj.Cube.get_step>, Image.get_step <mpdaf.obj.Image.get_step> and Spectrum.get_step <mpdaf.obj.Spectrum.get_step> return the world-coordinate separations between pixels along each axis of a cube, image, or spectrum, respectively:

.. ipython::

  In [1]: cube.get_step(unit_wave=u.nm, unit_wcs=u.deg)

  In [1]: ima1.get_step(unit=u.deg)

  In [1]: spe.get_step(unit=u.angstrom)

Cube.get_range <mpdaf.obj.Cube.get_range> returns the range of wavelengths, declinations and right ascensions in a cube. Similarly, Image.get_range <mpdaf.obj.Image.get_range> returns the range of declinations and right ascensions in an image, and Spectrum.get_range <mpdaf.obj.Spectrum.get_range> returns the range of wavelengths in a spectrum, as demonstrated below:

.. ipython::

  In [1]: cube.get_range(unit_wave=u.nm, unit_wcs=u.deg)

  In [1]: ima1.get_range(unit=u.deg)

  In [1]: spe.get_range(unit=u.angstrom)

The get_start <mpdaf.obj.Cube.get_start> and get_end <mpdaf.obj.Cube.get_end> methods of cube, image and spectrum objects, return the world-coordinate values of the first and last pixels of each axis:

.. ipython::

  In [1]: print(cube.get_start(unit_wave=u.nm, unit_wcs=u.deg), cube.get_end(unit_wave=u.nm, unit_wcs=u.deg))

  In [1]: print(ima1.get_start(unit=u.deg), ima2.get_end(unit=u.deg))

  In [1]: print(spe.get_start(unit=u.angstrom), spe.get_end(unit=u.angstrom))

Note that when the declination axis is rotated away from the vertical axis of the image, the coordinates returned by get_start <mpdaf.obj.Image.get_start> and get_end <mpdaf.obj.Image.get_end> are not the minimum and maximum coordinate values within the image, so they differ from the values returned by get_range <mpdaf.obj.Image.get_range>.

Cube.get_rot <mpdaf.obj.Cube.get_rot> and Image.get_rot <mpdaf.obj.Image.get_rot> return the rotation angle of the declination axis to the vertical axis of the images within these objects:

.. ipython::

  In [1]: cube.get_rot(unit=u.deg)

  In [1]: ima1.get_rot(unit=u.rad)


Updated flux and variance values can be assigned directly to the O.data and O.var attributes, respectively. Similarly, elements of the data can be masked or unmasked by assigning True or False values to the corresponding elements of the O.mask attribute. Changes to the spatial world coordinates must be performed using the set_wcs <mpdaf.obj.Cube.set_wcs> method:

.. ipython::

  In [1]: ima2.data[0:10,0:10] = 0

  In [1]: ima2.mask[0:10,0:10] = True

  In [1]: plt.figure()

  @savefig ObjFormatMaskedIma2.png width=4in
  In [8]: ima2.plot()

.. ipython::
   :suppress:

   In [4]: plt.close("all")

   In [4]: %reset -f