Skip to content

Latest commit

 

History

History
32 lines (29 loc) · 2 KB

Jacobi_identity_cpb.md

File metadata and controls

32 lines (29 loc) · 2 KB
title date lang slug tags
Jacobi Identity for Classical Possion Bracket
2016-10-30
en
jacobi-identity
Mechanics
$\newcommand{\pp}{\partial} \newcommand{\sgn}{\mathrm{sgn}} \newcommand{\mdef}{\overset{\mathrm{def}}{=}}$ Definition of Classical Possion Bracket: $$[f, g]=\sum_{i=1, 2,\ldots, n}\frac{\pp(f, g)}{\pp(p_i, q_i)}=\sum_{i=1, 2,\ldots, n}\left(\frac{\pp f}{\pp p_i}\frac{\pp g}{\pp q_i}-\frac{\pp f}{\pp q_i}\frac{\pp g}{\pp p_i}\right)$$

If we define $p_{-i}\mdef q_{i}$, and $I={\pm 1, \pm, 2,\ldots, \pm n}$, we can rewrite it: $$[f, g]=\sum_{i\in I} \sgn(i) \frac{\pp f}{\pp p_i}\frac{\pp g}{\pp p_{-i}}$$

Jacobi Identity is $[f,[g,h]]+[g,[h,f]]+[h,[f,g]]=0$. With the new notation, we can rewrite it as $$\begin{aligned} \sum_{\overrightarrow{fgh}}[f,[g,h]] &=\sum_{\overrightarrow{fgh}}\sum_{i\in I}\sgn(i)\frac{\pp f}{\pp p_i}\frac{\pp}{\pp p_{-i}}\left(\sum_{j\in I}\sgn(j)\frac{\pp g}{\pp p_j}\frac{\pp h}{\pp p_{-j}}\right)\ &=\sum_{\overrightarrow{fgh}}\sum_{i, j\in I}\sgn(ij)\left(\frac{\pp f}{{\pp p_{i}}}\frac{\pp h}{{\pp p_{-j}}}\frac{\pp^2g}{{\pp p_{-i}}{\pp p_{j}}} +\frac{\pp f}{{\pp p_{i}}}\frac{\pp g}{{\pp p_{j}}}\frac{\pp^2h}{{\pp p_{-i}}{\pp p_{-j}}}\right)\ &=\sum_{\overrightarrow{fgh}}\sum_{i, j\in I}\sgn(ij)\left(\frac{\pp f}{{\pp p_{i}}}\frac{\pp h}{{\pp p_{-j}}}\frac{\pp^2g}{{\pp p_{-i}}{\pp p_{j}}} +\frac{\pp h}{{\pp p_{i}}}\frac{\pp f}{{\pp p_{j}}}\frac{\pp^2g}{{\pp p_{-i}}{\pp p_{-j}}}\right)\ &=\sum_{\overrightarrow{fgh}}\sum_{i, j\in I}\sgn(ij)\left(\frac{\pp f}{{\pp p_{i}}}\frac{\pp h}{{\pp p_{-j}}}\frac{\pp^2g}{{\pp p_{-i}}{\pp p_{j}}} +\frac{\pp f}{{\pp p_{i}}}\frac{\pp h}{{\pp p_{j}}}\frac{\pp^2g}{{\pp p_{-i}}{\pp p_{-j}}}\right)\ &=\sum_{\overrightarrow{fgh}}\sum_{i, j\in I}\sgn(ij)\left(\frac{\pp f}{{\pp p_{i}}}\frac{\pp h}{{\pp p_{-j}}}\frac{\pp^2g}{{\pp p_{-i}}{\pp p_{j}}} -\frac{\pp f}{{\pp p_{i}}}\frac{\pp h}{{\pp p_{-j}}}\frac{\pp^2g}{{\pp p_{-i}}{\pp p_{j}}}\right)\ &=0\end{aligned}$$