Permalink
Fetching contributors…
Cannot retrieve contributors at this time
914 lines (800 sloc) 33.2 KB
# -*- coding: utf-8 -*-
"""
GBC disassembler
"""
from __future__ import print_function
from __future__ import absolute_import
import os
import argparse
from ctypes import c_int8
from . import configuration
from .wram import read_constants
z80_table = [
('nop', 0), # 00
('ld bc, {}', 2), # 01
('ld [bc], a', 0), # 02
('inc bc', 0), # 03
('inc b', 0), # 04
('dec b', 0), # 05
('ld b, ${:02x}', 1), # 06
('rlca', 0), # 07
('ld [{}], sp', 2), # 08
('add hl, bc', 0), # 09
('ld a, [bc]', 0), # 0a
('dec bc', 0), # 0b
('inc c', 0), # 0c
('dec c', 0), # 0d
('ld c, ${:02x}', 1), # 0e
('rrca', 0), # 0f
('db $10', 0), # 10
('ld de, {}', 2), # 11
('ld [de], a', 0), # 12
('inc de', 0), # 13
('inc d', 0), # 14
('dec d', 0), # 15
('ld d, ${:02x}', 1), # 16
('rla', 0), # 17
('jr {}', 1), # 18
('add hl, de', 0), # 19
('ld a, [de]', 0), # 1a
('dec de', 0), # 1b
('inc e', 0), # 1c
('dec e', 0), # 1d
('ld e, ${:02x}', 1), # 1e
('rra', 0), # 1f
('jr nz, {}', 1), # 20
('ld hl, {}', 2), # 21
('ld [hli], a', 0), # 22
('inc hl', 0), # 23
('inc h', 0), # 24
('dec h', 0), # 25
('ld h, ${:02x}', 1), # 26
('daa', 0), # 27
('jr z, {}', 1), # 28
('add hl, hl', 0), # 29
('ld a, [hli]', 0), # 2a
('dec hl', 0), # 2b
('inc l', 0), # 2c
('dec l', 0), # 2d
('ld l, ${:02x}', 1), # 2e
('cpl', 0), # 2f
('jr nc, {}', 1), # 30
('ld sp, {}', 2), # 31
('ld [hld], a', 0), # 32
('inc sp', 0), # 33
('inc [hl]', 0), # 34
('dec [hl]', 0), # 35
('ld [hl], ${:02x}', 1), # 36
('scf', 0), # 37
('jr c, {}', 1), # 38
('add hl, sp', 0), # 39
('ld a, [hld]', 0), # 3a
('dec sp', 0), # 3b
('inc a', 0), # 3c
('dec a', 0), # 3d
('ld a, ${:02x}', 1), # 3e
('ccf', 0), # 3f
('ld b, b', 0), # 40
('ld b, c', 0), # 41
('ld b, d', 0), # 42
('ld b, e', 0), # 43
('ld b, h', 0), # 44
('ld b, l', 0), # 45
('ld b, [hl]', 0), # 46
('ld b, a', 0), # 47
('ld c, b', 0), # 48
('ld c, c', 0), # 49
('ld c, d', 0), # 4a
('ld c, e', 0), # 4b
('ld c, h', 0), # 4c
('ld c, l', 0), # 4d
('ld c, [hl]', 0), # 4e
('ld c, a', 0), # 4f
('ld d, b', 0), # 50
('ld d, c', 0), # 51
('ld d, d', 0), # 52
('ld d, e', 0), # 53
('ld d, h', 0), # 54
('ld d, l', 0), # 55
('ld d, [hl]', 0), # 56
('ld d, a', 0), # 57
('ld e, b', 0), # 58
('ld e, c', 0), # 59
('ld e, d', 0), # 5a
('ld e, e', 0), # 5b
('ld e, h', 0), # 5c
('ld e, l', 0), # 5d
('ld e, [hl]', 0), # 5e
('ld e, a', 0), # 5f
('ld h, b', 0), # 60
('ld h, c', 0), # 61
('ld h, d', 0), # 62
('ld h, e', 0), # 63
('ld h, h', 0), # 64
('ld h, l', 0), # 65
('ld h, [hl]', 0), # 66
('ld h, a', 0), # 67
('ld l, b', 0), # 68
('ld l, c', 0), # 69
('ld l, d', 0), # 6a
('ld l, e', 0), # 6b
('ld l, h', 0), # 6c
('ld l, l', 0), # 6d
('ld l, [hl]', 0), # 6e
('ld l, a', 0), # 6f
('ld [hl], b', 0), # 70
('ld [hl], c', 0), # 71
('ld [hl], d', 0), # 72
('ld [hl], e', 0), # 73
('ld [hl], h', 0), # 74
('ld [hl], l', 0), # 75
('halt', 0), # 76
('ld [hl], a', 0), # 77
('ld a, b', 0), # 78
('ld a, c', 0), # 79
('ld a, d', 0), # 7a
('ld a, e', 0), # 7b
('ld a, h', 0), # 7c
('ld a, l', 0), # 7d
('ld a, [hl]', 0), # 7e
('ld a, a', 0), # 7f
('add b', 0), # 80
('add c', 0), # 81
('add d', 0), # 82
('add e', 0), # 83
('add h', 0), # 84
('add l', 0), # 85
('add [hl]', 0), # 86
('add a', 0), # 87
('adc b', 0), # 88
('adc c', 0), # 89
('adc d', 0), # 8a
('adc e', 0), # 8b
('adc h', 0), # 8c
('adc l', 0), # 8d
('adc [hl]', 0), # 8e
('adc a', 0), # 8f
('sub b', 0), # 90
('sub c', 0), # 91
('sub d', 0), # 92
('sub e', 0), # 93
('sub h', 0), # 94
('sub l', 0), # 95
('sub [hl]', 0), # 96
('sub a', 0), # 97
('sbc b', 0), # 98
('sbc c', 0), # 99
('sbc d', 0), # 9a
('sbc e', 0), # 9b
('sbc h', 0), # 9c
('sbc l', 0), # 9d
('sbc [hl]', 0), # 9e
('sbc a', 0), # 9f
('and b', 0), # a0
('and c', 0), # a1
('and d', 0), # a2
('and e', 0), # a3
('and h', 0), # a4
('and l', 0), # a5
('and [hl]', 0), # a6
('and a', 0), # a7
('xor b', 0), # a8
('xor c', 0), # a9
('xor d', 0), # aa
('xor e', 0), # ab
('xor h', 0), # ac
('xor l', 0), # ad
('xor [hl]', 0), # ae
('xor a', 0), # af
('or b', 0), # b0
('or c', 0), # b1
('or d', 0), # b2
('or e', 0), # b3
('or h', 0), # b4
('or l', 0), # b5
('or [hl]', 0), # b6
('or a', 0), # b7
('cp b', 0), # b8
('cp c', 0), # b9
('cp d', 0), # ba
('cp e', 0), # bb
('cp h', 0), # bc
('cp l', 0), # bd
('cp [hl]', 0), # be
('cp a', 0), # bf
('ret nz', 0), # c0
('pop bc', 0), # c1
('jp nz, {}', 2), # c2
('jp {}', 2), # c3
('call nz, {}', 2), # c4
('push bc', 0), # c5
('add ${:02x}', 1), # c6
('rst $0', 0), # c7
('ret z', 0), # c8
('ret', 0), # c9
('jp z, {}', 2), # ca
('bitops', 1), # cb
('call z, {}', 2), # cc
('call {}', 2), # cd
('adc ${:02x}', 1), # ce
('rst $8', 0), # cf
('ret nc', 0), # d0
('pop de', 0), # d1
('jp nc, ${:04x}', 2), # d2
('db $d3', 0), # d3
('call nc, {}', 2), # d4
('push de', 0), # d5
('sub ${:02x}', 1), # d6
('rst $10', 0), # d7
('ret c', 0), # d8
('reti', 0), # d9
('jp c, ${:04x}', 2), # da
('db $db', 0), # db
('call c, {}', 2), # dc
('db $dd', 2), # dd
('sbc ${:02x}', 1), # de
('rst $18', 0), # df
('ld [{}], a', 1), # e0
('pop hl', 0), # e1
('ld [$ff00+c], a', 0), # e2
('db $e3', 0), # e3
('db $e4', 0), # e4
('push hl', 0), # e5
('and ${:02x}', 1), # e6
('rst $20', 0), # e7
('add sp, ${:02x}', 1), # e8
('jp [hl]', 0), # e9
('ld [{}], a', 2), # ea
('db $eb', 0), # eb
('db $ec', 2), # ec
('db $ed', 2), # ed
('xor ${:02x}', 1), # ee
('rst $28', 0), # ef
('ld a, [{}]', 1), # f0
('pop af', 0), # f1
('db $f2', 0), # f2
('di', 0), # f3
('db $f4', 0), # f4
('push af', 0), # f5
('or ${:02x}', 1), # f6
('rst $30', 0), # f7
('ld hl, sp+${:02x}', 1), # f8
('ld sp, [hl]', 0), # f9
('ld a, [{}]', 2), # fa
('ei', 0), # fb
('db $fc', 2), # fc
('db $fd', 2), # fd
('cp ${:02x}', 1), # fe
('rst $38', 0), # ff
]
bit_ops_table = [
"rlc b", "rlc c", "rlc d", "rlc e", "rlc h", "rlc l", "rlc [hl]", "rlc a", # $00 - $07
"rrc b", "rrc c", "rrc d", "rrc e", "rrc h", "rrc l", "rrc [hl]", "rrc a", # $08 - $0f
"rl b", "rl c", "rl d", "rl e", "rl h", "rl l", "rl [hl]", "rl a", # $10 - $17
"rr b", "rr c", "rr d", "rr e", "rr h", "rr l", "rr [hl]", "rr a", # $18 - $1f
"sla b", "sla c", "sla d", "sla e", "sla h", "sla l", "sla [hl]", "sla a", # $20 - $27
"sra b", "sra c", "sra d", "sra e", "sra h", "sra l", "sra [hl]", "sra a", # $28 - $2f
"swap b", "swap c", "swap d", "swap e", "swap h", "swap l", "swap [hl]", "swap a", # $30 - $37
"srl b", "srl c", "srl d", "srl e", "srl h", "srl l", "srl [hl]", "srl a", # $38 - $3f
"bit 0, b", "bit 0, c", "bit 0, d", "bit 0, e", "bit 0, h", "bit 0, l", "bit 0, [hl]", "bit 0, a", # $40 - $47
"bit 1, b", "bit 1, c", "bit 1, d", "bit 1, e", "bit 1, h", "bit 1, l", "bit 1, [hl]", "bit 1, a", # $48 - $4f
"bit 2, b", "bit 2, c", "bit 2, d", "bit 2, e", "bit 2, h", "bit 2, l", "bit 2, [hl]", "bit 2, a", # $50 - $57
"bit 3, b", "bit 3, c", "bit 3, d", "bit 3, e", "bit 3, h", "bit 3, l", "bit 3, [hl]", "bit 3, a", # $58 - $5f
"bit 4, b", "bit 4, c", "bit 4, d", "bit 4, e", "bit 4, h", "bit 4, l", "bit 4, [hl]", "bit 4, a", # $60 - $67
"bit 5, b", "bit 5, c", "bit 5, d", "bit 5, e", "bit 5, h", "bit 5, l", "bit 5, [hl]", "bit 5, a", # $68 - $6f
"bit 6, b", "bit 6, c", "bit 6, d", "bit 6, e", "bit 6, h", "bit 6, l", "bit 6, [hl]", "bit 6, a", # $70 - $77
"bit 7, b", "bit 7, c", "bit 7, d", "bit 7, e", "bit 7, h", "bit 7, l", "bit 7, [hl]", "bit 7, a", # $78 - $7f
"res 0, b", "res 0, c", "res 0, d", "res 0, e", "res 0, h", "res 0, l", "res 0, [hl]", "res 0, a", # $80 - $87
"res 1, b", "res 1, c", "res 1, d", "res 1, e", "res 1, h", "res 1, l", "res 1, [hl]", "res 1, a", # $88 - $8f
"res 2, b", "res 2, c", "res 2, d", "res 2, e", "res 2, h", "res 2, l", "res 2, [hl]", "res 2, a", # $90 - $97
"res 3, b", "res 3, c", "res 3, d", "res 3, e", "res 3, h", "res 3, l", "res 3, [hl]", "res 3, a", # $98 - $9f
"res 4, b", "res 4, c", "res 4, d", "res 4, e", "res 4, h", "res 4, l", "res 4, [hl]", "res 4, a", # $a0 - $a7
"res 5, b", "res 5, c", "res 5, d", "res 5, e", "res 5, h", "res 5, l", "res 5, [hl]", "res 5, a", # $a8 - $af
"res 6, b", "res 6, c", "res 6, d", "res 6, e", "res 6, h", "res 6, l", "res 6, [hl]", "res 6, a", # $b0 - $b7
"res 7, b", "res 7, c", "res 7, d", "res 7, e", "res 7, h", "res 7, l", "res 7, [hl]", "res 7, a", # $b8 - $bf
"set 0, b", "set 0, c", "set 0, d", "set 0, e", "set 0, h", "set 0, l", "set 0, [hl]", "set 0, a", # $c0 - $c7
"set 1, b", "set 1, c", "set 1, d", "set 1, e", "set 1, h", "set 1, l", "set 1, [hl]", "set 1, a", # $c8 - $cf
"set 2, b", "set 2, c", "set 2, d", "set 2, e", "set 2, h", "set 2, l", "set 2, [hl]", "set 2, a", # $d0 - $d7
"set 3, b", "set 3, c", "set 3, d", "set 3, e", "set 3, h", "set 3, l", "set 3, [hl]", "set 3, a", # $d8 - $df
"set 4, b", "set 4, c", "set 4, d", "set 4, e", "set 4, h", "set 4, l", "set 4, [hl]", "set 4, a", # $e0 - $e7
"set 5, b", "set 5, c", "set 5, d", "set 5, e", "set 5, h", "set 5, l", "set 5, [hl]", "set 5, a", # $e8 - $ef
"set 6, b", "set 6, c", "set 6, d", "set 6, e", "set 6, h", "set 6, l", "set 6, [hl]", "set 6, a", # $f0 - $f7
"set 7, b", "set 7, c", "set 7, d", "set 7, e", "set 7, h", "set 7, l", "set 7, [hl]", "set 7, a" # $f8 - $ff
]
unconditional_returns = [0xc9, 0xd9]
absolute_jumps = [0xc3, 0xc2, 0xca, 0xd2, 0xda]
call_commands = [0xcd, 0xc4, 0xcc, 0xd4, 0xdc]
relative_jumps = [0x18, 0x20, 0x28, 0x30, 0x38]
unconditional_jumps = [0xc3, 0x18]
def asm_label(address):
"""
Return a local label name for asm at <address>.
"""
return '.asm_%x' % address
def data_label(address):
"""
Return a local label name for data at <address>.
"""
return '.data_%x' % address
def get_local_address(address):
"""
Return the local address of a rom address.
"""
bank = address / 0x4000
address &= 0x3fff
if bank:
return address + 0x4000
return address
def get_global_address(address, bank):
"""
Return the rom address of a local address and bank.
This accounts for a quirk in mbc3 where 0:4000-7fff resolves to 1:4000-7fff.
"""
if address < 0x8000:
if address >= 0x4000 and bank > 0:
return address + (bank - 1) * 0x4000
return address
def created_but_unused_labels_exist(byte_labels):
"""
Check whether a label has been created but not used.
If so, then that means it has to be called or specified later.
"""
return (False in [label["definition"] for label in byte_labels.values()])
def all_byte_labels_are_defined(byte_labels):
"""
Check whether all labels have already been defined.
"""
return (False not in [label["definition"] for label in byte_labels.values()])
def load_rom(path='baserom.gbc'):
return bytearray(open(path, 'rb').read())
def read_symfile(path='baserom.sym'):
"""
Return a list of dicts of label data from an rgbds .sym file.
"""
symbols = []
for line in open(path):
line = line.strip().split(';')[0]
if line:
bank_address, label = line.split(' ')[:2]
bank, address = bank_address.split(':')
symbols += [{
'label': label,
'bank': int(bank, 16),
'address': int(address, 16),
}]
return symbols
def load_symbols(path):
sym = {}
reverse_sym = {}
wram_sym = {}
sram_sym = {}
symbols = read_symfile(path)
for symbol in symbols:
bank = symbol['bank']
address = symbol['address']
label = symbol['label']
if 0x0000 <= address < 0x8000:
if bank not in sym:
sym[bank] = {}
sym[bank][address] = label
reverse_sym[label] = get_global_address(address, bank)
elif 0xa000 <= address < 0xc000:
if bank not in sram_sym:
sram_sym[bank] = {}
sram_sym[bank][address] = label
elif address < 0xe000:
if bank not in wram_sym:
wram_sym[bank] = {}
wram_sym[bank][address] = label
else:
raise ValueError("Unsupported symfile label type.")
return sym, reverse_sym, wram_sym, sram_sym
def get_symbol(sym, address, bank=0):
if sym:
if 0x0000 <= address < 0x4000:
return sym.get(0, {}).get(address)
else:
return sym.get(bank, {}).get(address)
return None
def get_banked_ram_sym(sym, address):
#if sym:
# if 0xc000 <= address < 0xd000:
# return sym.get(0, {}).get(address)
# else:
# return sym.get(bank, {}).get(address)
if sym:
for bank in sym.keys():
temp_sym = sym.get(bank, {}).get(address)
if temp_sym:
return temp_sym
return None
def create_address_comment(offset):
comment_bank = offset / 0x4000
if comment_bank != 0:
comment_bank_addr = (offset % 0x4000) + 0x4000
else:
comment_bank_addr = offset
return " ; %x (%x:%x)" % (offset, comment_bank, comment_bank_addr)
def offset_is_used(labels, offset):
if offset in labels.keys():
return 0 < labels[offset]["usage"]
class Disassembler(object):
"""
GBC disassembler
"""
def __init__(self, config):
"""
Setup the class instance.
"""
self.config = config
self.spacing = '\t'
self.rom = None
self.sym = None
self.rsym = None
self.gbhw = None
self.vram = None
self.sram = None
self.hram = None
self.wram = None
def initialize(self, rom, symfile):
"""
Setup the disassembler.
"""
path = os.path.join(self.config.path, rom)
self.rom = load_rom(path)
path = os.path.join(self.config.path, symfile)
if os.path.exists(path):
self.sym, self.rsym, self.wram, self.sram = load_symbols(path)
path = os.path.join(self.config.path, 'gbhw.asm')
if os.path.exists(path):
self.gbhw = read_constants(path)
else:
path = os.path.join(self.config.path, "constants/hardware_constants.asm")
if os.path.exists(path):
self.gbhw = read_constants(path)
path = os.path.join(self.config.path, 'vram.asm')
if os.path.exists(path):
self.vram = read_constants(path)
path = os.path.join(self.config.path, 'hram.asm')
if os.path.exists(path):
self.hram = read_constants(path)
def find_label(self, address, bank=0):
if type(address) is str:
address = int(address.replace('$', '0x'), 16)
elif address is None:
return address
if 0x0000 <= address < 0x8000:
label = self.get_symbol(address, bank)
elif address < 0xa000 and self.vram:
label = self.vram.get(address)
elif address < 0xc000:
label = self.get_sram(address)
elif address < 0xe000:
label = self.get_wram(address)
elif ((0xff00 <= address < 0xff80) or (address == 0xffff)) and self.gbhw:
label = self.gbhw.get(address)
elif (0xff80 <= address < 0xffff) and self.hram:
label = self.hram.get(address)
else:
label = None
return label
def get_symbol(self, address, bank):
symbol = get_symbol(self.sym, address, bank)
if symbol == 'NULL' and address == 0 and bank == 0:
return None
return symbol
def get_wram(self, address):
symbol = get_banked_ram_sym(self.wram, address)
if symbol == 'NULL' and address == 0:
return None
return symbol
def get_sram(self, address):
symbol = get_banked_ram_sym(self.sram, address)
if symbol == 'NULL' and address == 0:
return None
return symbol
def find_address_from_label(self, label):
if self.rsym:
return self.rsym.get(label)
return None
def output_bank_opcodes(self, start_offset, stop_offset, hard_stop=False, parse_data=False, include_last_address=True):
"""
Output bank opcodes.
fs = current_address
b = bank_byte
in = input_data -- rom
bank_size = byte_count
i = offset
ad = end_address
a, oa = current_byte_number
stop_at can be used to supply a list of addresses to not disassemble
over. This is useful if you know in advance that there are a lot of
fall-throughs.
"""
debug = False
bank_id = start_offset / 0x4000
stop_offset_undefined = False
# check if stop_offset isn't defined
if stop_offset is None:
stop_offset_undefined = True
# stop at the end of the current bank if stop_offset is not defined
stop_offset = (bank_id + 1) * 0x4000 - 1
if debug:
print("bank id is: " + str(bank_id))
rom = self.rom
offset = start_offset
current_byte_number = 0 #start from the beginning
byte_labels = {}
data_tables = {}
output = "Func_%x:%s\n" % (start_offset,create_address_comment(start_offset))
is_data = False
while True:
#first check if this byte already has a label
#if it does, use the label
#if not, generate a new label
local_offset = get_local_address(offset)
data_label_used = offset_is_used(data_tables, local_offset)
byte_label_used = offset_is_used(byte_labels, local_offset)
data_label_created = local_offset in data_tables.keys()
byte_label_created = local_offset in byte_labels.keys()
if byte_label_created:
# if a byte label exists, remove any significance if there is a data label that exists
if data_label_created:
data_line_label = data_tables[local_offset]["name"]
data_tables[local_offset]["usage"] = 0
else:
data_line_label = data_label(offset)
data_tables[local_offset] = {}
data_tables[local_offset]["name"] = data_line_label
data_tables[local_offset]["usage"] = 0
line_label = byte_labels[local_offset]["name"]
byte_labels[local_offset]["usage"] += 1
output += "\n"
elif data_label_created and parse_data:
# go add usage to a data label if it exists
data_line_label = data_tables[local_offset]["name"]
data_tables[local_offset]["usage"] += 1
line_label = asm_label(offset)
byte_labels[local_offset] = {}
byte_labels[local_offset]["name"] = line_label
byte_labels[local_offset]["usage"] = 0
output += "\n"
else:
# create both a data and byte label if neither exist
data_line_label = data_label(offset)
data_tables[local_offset] = {}
data_tables[local_offset]["name"] = data_line_label
data_tables[local_offset]["usage"] = 0
line_label = asm_label(offset)
byte_labels[local_offset] = {}
byte_labels[local_offset]["name"] = line_label
byte_labels[local_offset]["usage"] = 0
# any labels created not above are now used, so mark them as "defined"
byte_labels[local_offset]["definition"] = True
data_tables[local_offset]["definition"] = True
# for now, output the byte and data labels (unused labels will be removed later
output += line_label + "\n" + data_line_label + "\n"
# get the current byte
opcode_byte = rom[offset]
# process the current byte if this is code or parse data has not been set
if not is_data or not parse_data:
# fetch the opcode string from a predefined table
opcode_str = z80_table[opcode_byte][0]
# fetch the number of arguments
opcode_nargs = z80_table[opcode_byte][1]
# get opcode arguments in advance (may not be used)
opcode_arg_1 = rom[offset+1]
opcode_arg_2 = rom[offset+2]
if opcode_nargs == 0:
# set output string simply as the opcode
opcode_output_str = opcode_str
elif opcode_nargs == 1:
# opcodes with 1 argument
if opcode_byte != 0xcb: # bit opcodes are handled separately
if opcode_byte in relative_jumps:
# if the current opcode is a relative jump, generate a label for the address we're jumping to
# get the address of the location to jump to
target_address = offset + 2 + c_int8(opcode_arg_1).value
# get the local address to use as a key for byte_labels and data_tables
local_target_address = get_local_address(target_address)
if local_target_address in byte_labels.keys():
# if the label has already been created, increase the usage and set output to the already created label
byte_labels[local_target_address]["usage"] += 1
opcode_output_str = byte_labels[local_target_address]["name"]
elif target_address < start_offset:
# if we're jumping to an address that is located before the start offset, assume it is a function
opcode_output_str = "Func_%x" % target_address
else:
# create a new label
opcode_output_str = asm_label(target_address)
byte_labels[local_target_address] = {}
byte_labels[local_target_address]["name"] = opcode_output_str
# we know the label is used once, so set the usage to 1
byte_labels[local_target_address]["usage"] = 1
# since the label has not been output yet, mark it as "not defined"
byte_labels[local_target_address]["definition"] = False
# check if the target address conflicts with any data labels
if local_target_address in data_tables.keys():
# if so, remove any instances of it being used and set it as defined
data_tables[local_target_address]["usage"] = 0
data_tables[local_target_address]["definition"] = True
# format the resulting argument into the output string
opcode_output_str = opcode_str.format(opcode_output_str)
# debug function
if created_but_unused_labels_exist(byte_labels) and debug:
output += create_address_comment(offset)
elif opcode_byte == 0xe0 or opcode_byte == 0xf0:
# handle gameboy hram read/write opcodes
# create the address
high_ram_address = 0xff00 + opcode_arg_1
# search for an hram constant if possible
high_ram_label = self.find_label(high_ram_address, bank_id)
# if we couldn't find one, default to the address
if high_ram_label is None:
high_ram_label = "$%x" % high_ram_address
# format the resulting argument into the output string
opcode_output_str = opcode_str.format(high_ram_label)
else:
# if this isn't a relative jump or hram read/write, just format the byte into the opcode string
opcode_output_str = opcode_str.format(opcode_arg_1)
else:
# handle bit opcodes by fetching the opcode from a separate table
opcode_output_str = bit_ops_table[opcode_arg_1]
elif opcode_nargs == 2:
# opcodes with a pointer as an argument
# format the two arguments into a little endian 16-bit pointer
local_target_offset = opcode_arg_2 << 8 | opcode_arg_1
# get the global offset of the pointer
target_offset = get_global_address(local_target_offset, bank_id)
# attempt to look for a matching label
target_label = self.find_label(target_offset, bank_id)
if opcode_byte in call_commands + absolute_jumps:
if target_label is None:
# if this is a call or jump opcode and the target label is not defined, create an undocumented label descriptor
target_label = "Func_%x" % target_offset
else:
# anything that isn't a call or jump is a load-based command
if target_label is None:
# handle the case of a label for the current address not existing
# first, check if this is a byte label
if offset_is_used(byte_labels, local_target_offset):
# fetch the already created byte label
target_label = byte_labels[local_target_offset]["name"]
# prevent this address from being treated as a data label
if local_target_offset in data_tables.keys():
data_tables[local_target_offset]["usage"] = 0
else:
data_tables[local_target_offset] = {}
data_tables[local_target_offset]["name"] = target_label
data_tables[local_target_offset]["usage"] = 0
data_tables[local_target_offset]["definition"] = True
elif local_target_offset >= 0x8000 or not parse_data:
# do not create a label if this is a wram label or parse_data is not set
target_label = "$%x" % local_target_offset
elif local_target_offset in data_tables.keys():
# if the target offset has been created as a data label, increase usage and use the already defined name
data_tables[local_target_offset]["usage"] += 1
target_label = data_tables[local_target_offset]["name"]
else:
# for now, treat this as a data label, but do not set it as used (will be replaced later if unused)
target_label = data_label(target_offset)
data_tables[local_target_offset] = {}
data_tables[local_target_offset]["name"] = target_label
data_tables[local_target_offset]["usage"] = 0
data_tables[local_target_offset]["definition"] = False
# format the label that was created into the opcode string
opcode_output_str = opcode_str.format(target_label)
else:
# error checking
raise ValueError("Invalid amount of args.")
# append the formatted opcode output string to the output
output += self.spacing + opcode_output_str + "\n" #+ " ; " + hex(offset)
# increase the current byte number and offset by the amount of arguments plus 1 (opcode itself)
current_byte_number += opcode_nargs + 1
offset += opcode_nargs + 1
else:
# output a single lined db, using the current byte
output += self.spacing + "db ${:02x}\n".format(opcode_byte) #+ " ; " + hex(offset)
# manually increment offset and current byte number
offset += 1
current_byte_number += 1
# stop treating the current code as data if we're parsing over a byte label
if get_local_address(offset) in byte_labels.keys():
is_data = False
# update the local offset
local_offset = get_local_address(offset)
# stop processing regardless of function end if we've passed the stop offset and the hard stop (dry run) flag is set
if hard_stop and offset >= stop_offset:
break
# check if this is the end of the function, or we're processing data
elif (opcode_byte in unconditional_jumps + unconditional_returns) or is_data:
# define data if it is located at the current offset
if local_offset not in byte_labels.keys() and local_offset in data_tables.keys() and created_but_unused_labels_exist(data_tables) and parse_data:
is_data = True
#stop reading at a jump, relative jump or return
elif all_byte_labels_are_defined(byte_labels) and (offset >= stop_offset or stop_offset_undefined):
break
# otherwise, add some spacing
output += "\n"
# before returning output, we need to clean up some things
# first, clean up on unused byte labels
for label_line in byte_labels.values():
if label_line["usage"] == 0:
output = output.replace((label_line["name"] + "\n"), "")
# clean up on unused data labels
# this is slightly trickier to do as arguments for two byte variables use data labels
# create a list of the output lines including the newlines
output_lines = [e+"\n" for e in output.split("\n") if e != ""]
# go through each label
for label_addr in data_tables.keys():
# get the label dict
label_line = data_tables[label_addr]
# check if this label is unused
if label_line["usage"] == 0:
# get label name
label_name = label_line["name"]
# loop over all output lines
for i, line in enumerate(output_lines):
if line.startswith(label_name):
# remove line if it starts with the current label
output_lines.pop(i)
elif label_name in line:
# if the label is used in a load-based opcode, replace it with the raw hex reference
output_lines[i] = output_lines[i].replace(label_name, "$%x" % get_local_address(label_addr))
# convert the modified list of lines into a string
output = "".join(output_lines)
# tone down excessive spacing
output = output.replace("\n\n\n","\n\n")
# add the offset of the final location
if include_last_address:
output += "; " + hex(offset)
return [output, offset, stop_offset, byte_labels, data_tables]
def get_raw_addr(addr):
if addr:
if ":" in addr:
addr = addr.split(":")
addr = int(addr[0], 16)*0x4000+(int(addr[1], 16)%0x4000)
else:
label_addr = disasm.find_address_from_label(addr)
if label_addr:
addr = label_addr
else:
addr = int(addr, 16)
return addr
if __name__ == "__main__":
# argument parser
ap = argparse.ArgumentParser()
ap.add_argument("-r", dest="rom", default="baserom.gbc")
ap.add_argument("-o", dest="filename", default="gbz80disasm_output.asm")
ap.add_argument("-s", dest="symfile")
ap.add_argument("-dp", "--use-disasm-path", dest="use_disasm_path", action="store_true")
ap.add_argument("-q", "--quiet", dest="quiet", action="store_true")
ap.add_argument("-nw", "--no-write", dest="no_write", action="store_true")
ap.add_argument("-d", "--dry-run", dest="dry_run", action="store_true")
ap.add_argument("-pd", "--parse_data", dest="parse_data", action="store_true")
ap.add_argument('offset')
ap.add_argument('end', nargs='?')
args = ap.parse_args()
# if symfile is unspecified, use the rom name as the symfile name
if args.symfile is None:
args.symfile = args.rom.split(".")[0] + ".sym"
# flag to determine whether to use the extras submodule path for labels/constants or the disassembly path
if args.use_disasm_path:
conf = configuration.Config(path=os.path.abspath(os.path.join(os.getcwd(),"../..")))
else:
conf = configuration.Config()
# initialize disassembler
disasm = Disassembler(conf)
disasm.initialize(args.rom, args.symfile)
# get global address of the start and stop offsets
start_addr = get_raw_addr(args.offset)
stop_addr = get_raw_addr(args.end)
# run the disassembler and return the output
output = disasm.output_bank_opcodes(start_addr,stop_addr,hard_stop=args.dry_run,parse_data=args.parse_data)[0]
# suppress output if quiet flag is set
if not args.quiet:
print(output)
# only write to the output file if the no write flag is unset
if not args.no_write:
with open(args.filename, "w") as f:
f.write(output)