Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
2588 lines (1850 sloc) 121 KB

Type Objects

Perhaps one of the most important structures of the Python object system is the structure that defines a new type: the :c:type:`PyTypeObject` structure. Type objects can be handled using any of the :c:func:`PyObject_\*` or :c:func:`PyType_\*` functions, but do not offer much that's interesting to most Python applications. These objects are fundamental to how objects behave, so they are very important to the interpreter itself and to any extension module that implements new types.

Type objects are fairly large compared to most of the standard types. The reason for the size is that each type object stores a large number of values, mostly C function pointers, each of which implements a small part of the type's functionality. The fields of the type object are examined in detail in this section. The fields will be described in the order in which they occur in the structure.

In addition to the following quick reference, the :ref:`typedef-examples` section provides at-a-glance insight into the meaning and use of :c:type:`PyTypeObject`.

Quick Reference

"tp slots"

PyTypeObject Slot [1] :ref:`Type <slot-typedefs-table>` special methods/attrs Info [2]
O T D I
<R> :c:member:`~PyTypeObject.tp_name` const char * __name__ X X    
:c:member:`~PyTypeObject.tp_basicsize` Py_ssize_t   X X   X
:c:member:`~PyTypeObject.tp_itemsize` Py_ssize_t     X   X
:c:member:`~PyTypeObject.tp_dealloc` :c:type:`destructor`   X X   X
:c:member:`~PyTypeObject.tp_vectorcall_offset` Py_ssize_t         ?
(:c:member:`~PyTypeObject.tp_getattr`) :c:type:`getattrfunc` __getattribute__, __getattr__       G
(:c:member:`~PyTypeObject.tp_setattr`) :c:type:`setattrfunc` __setattr__, __delattr__       G
:c:member:`~PyTypeObject.tp_as_async` :c:type:`PyAsyncMethods` * :ref:`sub-slots`       %
:c:member:`~PyTypeObject.tp_repr` :c:type:`reprfunc` __repr__ X X   X
:c:member:`~PyTypeObject.tp_as_number` :c:type:`PyNumberMethods` * :ref:`sub-slots`       %
:c:member:`~PyTypeObject.tp_as_sequence` :c:type:`PySequenceMethods` * :ref:`sub-slots`       %
:c:member:`~PyTypeObject.tp_as_mapping` :c:type:`PyMappingMethods` * :ref:`sub-slots`       %
:c:member:`~PyTypeObject.tp_hash` :c:type:`hashfunc` __hash__ X     G
:c:member:`~PyTypeObject.tp_call` :c:type:`ternaryfunc` __call__   X   X
:c:member:`~PyTypeObject.tp_str` :c:type:`reprfunc` __str__ X     X
:c:member:`~PyTypeObject.tp_getattro` :c:type:`getattrofunc` __getattribute__, __getattr__ X X   G
:c:member:`~PyTypeObject.tp_setattro` :c:type:`setattrofunc` __setattr__, __delattr__ X X   G
:c:member:`~PyTypeObject.tp_as_buffer` :c:type:`PyBufferProcs` *         %
:c:member:`~PyTypeObject.tp_flags` unsigned long   X X   ?
:c:member:`~PyTypeObject.tp_doc` const char * __doc__ X X    
:c:member:`~PyTypeObject.tp_traverse` :c:type:`traverseproc`     X   G
:c:member:`~PyTypeObject.tp_clear` :c:type:`inquiry`     X   G
:c:member:`~PyTypeObject.tp_richcompare` :c:type:`richcmpfunc` __lt__, __le__, __eq__, __ne__, __gt__, __ge__ X     G
:c:member:`~PyTypeObject.tp_weaklistoffset` Py_ssize_t     X   ?
:c:member:`~PyTypeObject.tp_iter` :c:type:`getiterfunc` __iter__       X
:c:member:`~PyTypeObject.tp_iternext` :c:type:`iternextfunc` __next__       X
:c:member:`~PyTypeObject.tp_methods` :c:type:`PyMethodDef` []   X X    
:c:member:`~PyTypeObject.tp_members` :c:type:`PyMemberDef` []     X    
:c:member:`~PyTypeObject.tp_getset` :c:type:`PyGetSetDef` []   X X    
:c:member:`~PyTypeObject.tp_base` :c:type:`PyTypeObject` * __base__     X  
:c:member:`~PyTypeObject.tp_dict` :c:type:`PyObject` * __dict__     ?  
:c:member:`~PyTypeObject.tp_descr_get` :c:type:`descrgetfunc` __get__       X
:c:member:`~PyTypeObject.tp_descr_set` :c:type:`descrsetfunc` __set__, __delete__       X
:c:member:`~PyTypeObject.tp_dictoffset` Py_ssize_t     X   ?
:c:member:`~PyTypeObject.tp_init` :c:type:`initproc` __init__ X X   X
:c:member:`~PyTypeObject.tp_alloc` :c:type:`allocfunc`   X   ? ?
:c:member:`~PyTypeObject.tp_new` :c:type:`newfunc` __new__ X X ? ?
:c:member:`~PyTypeObject.tp_free` :c:type:`freefunc`   X X ? ?
:c:member:`~PyTypeObject.tp_is_gc` :c:type:`inquiry`     X   X
<:c:member:`~PyTypeObject.tp_bases`> :c:type:`PyObject` * __bases__     ~  
<:c:member:`~PyTypeObject.tp_mro`> :c:type:`PyObject` * __mro__     ~  
[:c:member:`~PyTypeObject.tp_cache`] :c:type:`PyObject` *        
[:c:member:`~PyTypeObject.tp_subclasses`] :c:type:`PyObject` * __subclasses__      
[:c:member:`~PyTypeObject.tp_weaklist`] :c:type:`PyObject` *        
(:c:member:`~PyTypeObject.tp_del`) :c:type:`destructor`          
[:c:member:`~PyTypeObject.tp_version_tag`] unsigned int        
:c:member:`~PyTypeObject.tp_finalize` :c:type:`destructor` __del__       X

If :const:`COUNT_ALLOCS` is defined then the following (internal-only) fields exist as well:

[1]A slot name in parentheses indicates it is (effectively) deprecated. Names in angle brackets should be treated as read-only. Names in square brackets are for internal use only. "<R>" (as a prefix) means the field is required (must be non-NULL).
[2]

Columns:

"O": set on :c:type:`PyBaseObject_Type`

"T": set on :c:type:`PyType_Type`

"D": default (if slot is set to NULL)

X - *PyType_Ready* sets this value if it is *NULL*
~ - *PyType_Ready* always sets this value (it should be *NULL*)
? - *PyType_Ready* may set this value depending on other slots

Also see the inheritance column ("I").

"I": inheritance

X - type slot is inherited via *PyType_Ready* if defined with a *NULL* value
% - the slots of the sub-struct are inherited individually
G - inherited, but only in combination with other slots; see the slot's description
? - it's complicated; see the slot's description

Note that some slots are effectively inherited through the normal attribute lookup chain.

sub-slots

Slot :ref:`Type <slot-typedefs-table>` special methods
:c:member:`~PyAsyncMethods.am_await` :c:type:`unaryfunc` __await__
:c:member:`~PyAsyncMethods.am_aiter` :c:type:`unaryfunc` __aiter__
:c:member:`~PyAsyncMethods.am_anext` :c:type:`unaryfunc` __anext__
 
:c:member:`~PyNumberMethods.nb_add` :c:type:`binaryfunc` __add__ __radd__
:c:member:`~PyNumberMethods.nb_inplace_add` :c:type:`binaryfunc` __iadd__
:c:member:`~PyNumberMethods.nb_subtract` :c:type:`binaryfunc` __sub__ __rsub__
:c:member:`~PyNumberMethods.nb_inplace_subtract` :c:type:`binaryfunc` __sub__
:c:member:`~PyNumberMethods.nb_multiply` :c:type:`binaryfunc` __mul__ __rmul__
:c:member:`~PyNumberMethods.nb_inplace_multiply` :c:type:`binaryfunc` __mul__
:c:member:`~PyNumberMethods.nb_remainder` :c:type:`binaryfunc` __mod__ __rmod__
:c:member:`~PyNumberMethods.nb_inplace_remainder` :c:type:`binaryfunc` __mod__
:c:member:`~PyNumberMethods.nb_divmod` :c:type:`binaryfunc` __divmod__ __rdivmod__
:c:member:`~PyNumberMethods.nb_power` :c:type:`ternaryfunc` __pow__ __rpow__
:c:member:`~PyNumberMethods.nb_inplace_power` :c:type:`ternaryfunc` __pow__
:c:member:`~PyNumberMethods.nb_negative` :c:type:`unaryfunc` __neg__
:c:member:`~PyNumberMethods.nb_positive` :c:type:`unaryfunc` __pos__
:c:member:`~PyNumberMethods.nb_absolute` :c:type:`unaryfunc` __abs__
:c:member:`~PyNumberMethods.nb_bool` :c:type:`inquiry` __bool__
:c:member:`~PyNumberMethods.nb_invert` :c:type:`unaryfunc` __invert__
:c:member:`~PyNumberMethods.nb_lshift` :c:type:`binaryfunc` __lshift__ __rlshift__
:c:member:`~PyNumberMethods.nb_inplace_lshift` :c:type:`binaryfunc` __lshift__
:c:member:`~PyNumberMethods.nb_rshift` :c:type:`binaryfunc` __rshift__ __rrshift__
:c:member:`~PyNumberMethods.nb_inplace_rshift` :c:type:`binaryfunc` __rshift__
:c:member:`~PyNumberMethods.nb_and` :c:type:`binaryfunc` __and__ __rand__
:c:member:`~PyNumberMethods.nb_inplace_and` :c:type:`binaryfunc` __and__
:c:member:`~PyNumberMethods.nb_xor` :c:type:`binaryfunc` __xor__ __rxor__
:c:member:`~PyNumberMethods.nb_inplace_xor` :c:type:`binaryfunc` __xor__
:c:member:`~PyNumberMethods.nb_or` :c:type:`binaryfunc` __or__ __ror__
:c:member:`~PyNumberMethods.nb_inplace_or` :c:type:`binaryfunc` __or__
:c:member:`~PyNumberMethods.nb_int` :c:type:`unaryfunc` __int__
:c:member:`~PyNumberMethods.nb_reserved` void *  
:c:member:`~PyNumberMethods.nb_float` :c:type:`unaryfunc` __float__
:c:member:`~PyNumberMethods.nb_floor_divide` :c:type:`binaryfunc` __floordiv__
:c:member:`~PyNumberMethods.nb_inplace_floor_divide` :c:type:`binaryfunc` __floordiv__
:c:member:`~PyNumberMethods.nb_true_divide` :c:type:`binaryfunc` __truediv__
:c:member:`~PyNumberMethods.nb_inplace_true_divide` :c:type:`binaryfunc` __truediv__
:c:member:`~PyNumberMethods.nb_index` :c:type:`unaryfunc` __index__
:c:member:`~PyNumberMethods.nb_matrix_multiply` :c:type:`binaryfunc` __matmul__ __rmatmul__
:c:member:`~PyNumberMethods.nb_inplace_matrix_multiply` :c:type:`binaryfunc` __matmul__
 
:c:member:`~PyMappingMethods.mp_length` :c:type:`lenfunc` __len__
:c:member:`~PyMappingMethods.mp_subscript` :c:type:`binaryfunc` __getitem__
:c:member:`~PyMappingMethods.mp_ass_subscript` :c:type:`objobjargproc` __setitem__, __delitem__
 
:c:member:`~PySequenceMethods.sq_length` :c:type:`lenfunc` __len__
:c:member:`~PySequenceMethods.sq_concat` :c:type:`binaryfunc` __add__
:c:member:`~PySequenceMethods.sq_repeat` :c:type:`ssizeargfunc` __mul__
:c:member:`~PySequenceMethods.sq_item` :c:type:`ssizeargfunc` __getitem__
:c:member:`~PySequenceMethods.sq_ass_item` :c:type:`ssizeobjargproc` __setitem__ __delitem__
:c:member:`~PySequenceMethods.sq_contains` :c:type:`objobjproc` __contains__
:c:member:`~PySequenceMethods.sq_inplace_concat` :c:type:`binaryfunc` __iadd__
:c:member:`~PySequenceMethods.sq_inplace_repeat` :c:type:`ssizeargfunc` __imul__
 
:c:member:`~PyBufferProcs.bf_getbuffer` :c:func:`getbufferproc`  
:c:member:`~PyBufferProcs.bf_releasebuffer` :c:func:`releasebufferproc`  

slot typedefs

typedef Parameter Types Return Type
:c:type:`allocfunc`
Py_ssize_t
:c:type:`PyObject` *
:c:type:`destructor` void * void
:c:type:`freefunc` void * void
:c:type:`traverseproc`
void *
void *
int
:c:type:`newfunc` :c:type:`PyObject` *
:c:type:`initproc` int
:c:type:`reprfunc` :c:type:`PyObject` * :c:type:`PyObject` *
:c:type:`getattrfunc`
const char *
:c:type:`PyObject` *
:c:type:`setattrfunc` int
:c:type:`getattrofunc` :c:type:`PyObject` *
:c:type:`setattrofunc` int
:c:type:`descrgetfunc` :c:type:`PyObject` *
:c:type:`descrsetfunc` int
:c:type:`hashfunc` :c:type:`PyObject` * Py_hash_t
:c:type:`richcmpfunc` :c:type:`PyObject` *
:c:type:`getiterfunc` :c:type:`PyObject` * :c:type:`PyObject` *
:c:type:`iternextfunc` :c:type:`PyObject` * :c:type:`PyObject` *
:c:type:`lenfunc` :c:type:`PyObject` * Py_ssize_t
:c:type:`getbufferproc` int
:c:type:`releasebufferproc` void
:c:type:`inquiry` void * int
:c:type:`unaryfunc` :c:type:`PyObject` *
:c:type:`binaryfunc` :c:type:`PyObject` *
:c:type:`ternaryfunc` :c:type:`PyObject` *
:c:type:`ssizeargfunc`
Py_ssize_t
:c:type:`PyObject` *
:c:type:`ssizeobjargproc`
Py_ssize_t
int
:c:type:`objobjproc` int
:c:type:`objobjargproc` int

See :ref:`slot-typedefs` below for more detail.

PyTypeObject Definition

The structure definition for :c:type:`PyTypeObject` can be found in :file:`Include/object.h`. For convenience of reference, this repeats the definition found there:

.. literalinclude:: ../includes/typestruct.h

PyObject Slots

The type object structure extends the :c:type:`PyVarObject` structure. The :attr:`ob_size` field is used for dynamic types (created by :func:`type_new`, usually called from a class statement). Note that :c:data:`PyType_Type` (the metatype) initializes :c:member:`~PyTypeObject.tp_itemsize`, which means that its instances (i.e. type objects) must have the :attr:`ob_size` field.

.. c:member:: PyObject* PyObject._ob_next
             PyObject* PyObject._ob_prev

   These fields are only present when the macro ``Py_TRACE_REFS`` is defined.
   Their initialization to *NULL* is taken care of by the ``PyObject_HEAD_INIT``
   macro.  For statically allocated objects, these fields always remain *NULL*.
   For dynamically allocated objects, these two fields are used to link the object
   into a doubly-linked list of *all* live objects on the heap.  This could be used
   for various debugging purposes; currently the only use is to print the objects
   that are still alive at the end of a run when the environment variable
   :envvar:`PYTHONDUMPREFS` is set.

   **Inheritance:**

   These fields are not inherited by subtypes.

.. c:member:: Py_ssize_t PyObject.ob_refcnt

   This is the type object's reference count, initialized to ``1`` by the
   ``PyObject_HEAD_INIT`` macro.  Note that for statically allocated type objects,
   the type's instances (objects whose :attr:`ob_type` points back to the type) do
   *not* count as references.  But for dynamically allocated type objects, the
   instances *do* count as references.

   **Inheritance:**

   This field is not inherited by subtypes.

.. c:member:: PyTypeObject* PyObject.ob_type

   This is the type's type, in other words its metatype.  It is initialized by the
   argument to the ``PyObject_HEAD_INIT`` macro, and its value should normally be
   ``&PyType_Type``.  However, for dynamically loadable extension modules that must
   be usable on Windows (at least), the compiler complains that this is not a valid
   initializer.  Therefore, the convention is to pass *NULL* to the
   ``PyObject_HEAD_INIT`` macro and to initialize this field explicitly at the
   start of the module's initialization function, before doing anything else.  This
   is typically done like this::

      Foo_Type.ob_type = &PyType_Type;

   This should be done before any instances of the type are created.
   :c:func:`PyType_Ready` checks if :attr:`ob_type` is *NULL*, and if so,
   initializes it to the :attr:`ob_type` field of the base class.
   :c:func:`PyType_Ready` will not change this field if it is non-zero.

   **Inheritance:**

   This field is inherited by subtypes.

PyVarObject Slots

.. c:member:: Py_ssize_t PyVarObject.ob_size

   For statically allocated type objects, this should be initialized to zero.  For
   dynamically allocated type objects, this field has a special internal meaning.

   **Inheritance:**

   This field is not inherited by subtypes.

PyTypeObject Slots

Each slot has a section describing inheritance. If :c:func:`PyType_Ready` may set a value when the field is set to NULL then there will also be a "Default" section. (Note that many fields set on :c:type:`PyBaseObject_Type` and :c:type:`PyType_Type` effectively act as defaults.)

.. c:member:: const char* PyTypeObject.tp_name

   Pointer to a NUL-terminated string containing the name of the type. For types
   that are accessible as module globals, the string should be the full module
   name, followed by a dot, followed by the type name; for built-in types, it
   should be just the type name.  If the module is a submodule of a package, the
   full package name is part of the full module name.  For example, a type named
   :class:`T` defined in module :mod:`M` in subpackage :mod:`Q` in package :mod:`P`
   should have the :c:member:`~PyTypeObject.tp_name` initializer ``"P.Q.M.T"``.

   For dynamically allocated type objects, this should just be the type name, and
   the module name explicitly stored in the type dict as the value for key
   ``'__module__'``.

   For statically allocated type objects, the tp_name field should contain a dot.
   Everything before the last dot is made accessible as the :attr:`__module__`
   attribute, and everything after the last dot is made accessible as the
   :attr:`~definition.__name__` attribute.

   If no dot is present, the entire :c:member:`~PyTypeObject.tp_name` field is made accessible as the
   :attr:`~definition.__name__` attribute, and the :attr:`__module__` attribute is undefined
   (unless explicitly set in the dictionary, as explained above).  This means your
   type will be impossible to pickle.  Additionally, it will not be listed in
   module documentations created with pydoc.

   This field must not be *NULL*.  It is the only required field
   in :c:func:`PyTypeObject` (other than potentially
   :c:member:`~PyTypeObject.tp_itemsize`).

   **Inheritance:**

   This field is not inherited by subtypes.

.. c:member:: Py_ssize_t PyTypeObject.tp_basicsize
             Py_ssize_t PyTypeObject.tp_itemsize

   These fields allow calculating the size in bytes of instances of the type.

   There are two kinds of types: types with fixed-length instances have a zero
   :c:member:`~PyTypeObject.tp_itemsize` field, types with variable-length instances have a non-zero
   :c:member:`~PyTypeObject.tp_itemsize` field.  For a type with fixed-length instances, all
   instances have the same size, given in :c:member:`~PyTypeObject.tp_basicsize`.

   For a type with variable-length instances, the instances must have an
   :attr:`ob_size` field, and the instance size is :c:member:`~PyTypeObject.tp_basicsize` plus N
   times :c:member:`~PyTypeObject.tp_itemsize`, where N is the "length" of the object.  The value of
   N is typically stored in the instance's :attr:`ob_size` field.  There are
   exceptions:  for example, ints use a negative :attr:`ob_size` to indicate a
   negative number, and N is ``abs(ob_size)`` there.  Also, the presence of an
   :attr:`ob_size` field in the instance layout doesn't mean that the instance
   structure is variable-length (for example, the structure for the list type has
   fixed-length instances, yet those instances have a meaningful :attr:`ob_size`
   field).

   The basic size includes the fields in the instance declared by the macro
   :c:macro:`PyObject_HEAD` or :c:macro:`PyObject_VAR_HEAD` (whichever is used to
   declare the instance struct) and this in turn includes the :attr:`_ob_prev` and
   :attr:`_ob_next` fields if they are present.  This means that the only correct
   way to get an initializer for the :c:member:`~PyTypeObject.tp_basicsize` is to use the
   ``sizeof`` operator on the struct used to declare the instance layout.
   The basic size does not include the GC header size.

   A note about alignment: if the variable items require a particular alignment,
   this should be taken care of by the value of :c:member:`~PyTypeObject.tp_basicsize`.  Example:
   suppose a type implements an array of ``double``. :c:member:`~PyTypeObject.tp_itemsize` is
   ``sizeof(double)``. It is the programmer's responsibility that
   :c:member:`~PyTypeObject.tp_basicsize` is a multiple of ``sizeof(double)`` (assuming this is the
   alignment requirement for ``double``).

   For any type with variable-length instances, this field must not be *NULL*.

   **Inheritance:**

   These fields are inherited separately by subtypes.  If the base type has a
   non-zero :c:member:`~PyTypeObject.tp_itemsize`, it is generally not safe to set
   :c:member:`~PyTypeObject.tp_itemsize` to a different non-zero value in a subtype (though this
   depends on the implementation of the base type).

.. c:member:: destructor PyTypeObject.tp_dealloc

   A pointer to the instance destructor function.  This function must be defined
   unless the type guarantees that its instances will never be deallocated (as is
   the case for the singletons ``None`` and ``Ellipsis``).  The function signature is::

      void tp_dealloc(PyObject *self);

   The destructor function is called by the :c:func:`Py_DECREF` and
   :c:func:`Py_XDECREF` macros when the new reference count is zero.  At this point,
   the instance is still in existence, but there are no references to it.  The
   destructor function should free all references which the instance owns, free all
   memory buffers owned by the instance (using the freeing function corresponding
   to the allocation function used to allocate the buffer), and finally (as its
   last action) call the type's :c:member:`~PyTypeObject.tp_free` function.  If the type is not
   subtypable (doesn't have the :const:`Py_TPFLAGS_BASETYPE` flag bit set), it is
   permissible to call the object deallocator directly instead of via
   :c:member:`~PyTypeObject.tp_free`.  The object deallocator should be the one used to allocate the
   instance; this is normally :c:func:`PyObject_Del` if the instance was allocated
   using :c:func:`PyObject_New` or :c:func:`PyObject_VarNew`, or
   :c:func:`PyObject_GC_Del` if the instance was allocated using
   :c:func:`PyObject_GC_New` or :c:func:`PyObject_GC_NewVar`.

   **Inheritance:**

   This field is inherited by subtypes.

.. c:member:: Py_ssize_t PyTypeObject.tp_vectorcall_offset

   An optional offset to a per-instance function that implements calling
   the object using the *vectorcall* protocol, a more efficient alternative
   of the simpler :c:member:`~PyTypeObject.tp_call`.

   This field is only used if the flag :const:`_Py_TPFLAGS_HAVE_VECTORCALL`
   is set. If so, this must be a positive integer containing the offset in the
   instance of a :c:type:`vectorcallfunc` pointer.
   The signature is the same as for :c:func:`_PyObject_Vectorcall`::

        PyObject *vectorcallfunc(PyObject *callable, PyObject *const *args, size_t nargsf, PyObject *kwnames)

   The *vectorcallfunc* pointer may be zero, in which case the instance behaves
   as if :const:`_Py_TPFLAGS_HAVE_VECTORCALL` was not set: calling the instance
   falls back to :c:member:`~PyTypeObject.tp_call`.

   Any class that sets ``_Py_TPFLAGS_HAVE_VECTORCALL`` must also set
   :c:member:`~PyTypeObject.tp_call` and make sure its behaviour is consistent
   with the *vectorcallfunc* function.
   This can be done by setting *tp_call* to ``PyVectorcall_Call``:

   .. c:function:: PyObject *PyVectorcall_Call(PyObject *callable, PyObject *tuple, PyObject *dict)

      Call *callable*'s *vectorcallfunc* with positional and keyword
      arguments given in a tuple and dict, respectively.

      This function is intended to be used in the ``tp_call`` slot.
      It does not fall back to ``tp_call`` and it currently does not check the
      ``_Py_TPFLAGS_HAVE_VECTORCALL`` flag.
      To call an object, use one of the :c:func:`PyObject_Call <PyObject_Call>`
      functions instead.

   .. note::

      It is not recommended for :ref:`heap types <heap-types>` to implement
      the vectorcall protocol.
      When a user sets ``__call__`` in Python code, only ``tp_call`` is updated,
      possibly making it inconsistent with the vectorcall function.

   .. note::

      The semantics of the ``tp_vectorcall_offset`` slot are provisional and
      expected to be finalized in Python 3.9.
      If you use vectorcall, plan for updating your code for Python 3.9.

   .. versionchanged:: 3.8

      This slot was used for print formatting in Python 2.x.
      In Python 3.0 to 3.7, it was reserved and named ``tp_print``.

   **Inheritance:**

   This field is inherited by subtypes together with
   :c:member:`~PyTypeObject.tp_call`: a subtype inherits
   :c:member:`~PyTypeObject.tp_vectorcall_offset` from its base type when
   the subtype’s :c:member:`~PyTypeObject.tp_call` is NULL.

   Note that `heap types`_ (including subclasses defined in Python) do not
   inherit the :const:`_Py_TPFLAGS_HAVE_VECTORCALL` flag.

.. c:member:: getattrfunc PyTypeObject.tp_getattr

   An optional pointer to the get-attribute-string function.

   This field is deprecated.  When it is defined, it should point to a function
   that acts the same as the :c:member:`~PyTypeObject.tp_getattro` function, but taking a C string
   instead of a Python string object to give the attribute name.

   **Inheritance:**

   Group: :attr:`tp_getattr`, :attr:`tp_getattro`

   This field is inherited by subtypes together with :c:member:`~PyTypeObject.tp_getattro`: a subtype
   inherits both :c:member:`~PyTypeObject.tp_getattr` and :c:member:`~PyTypeObject.tp_getattro` from its base type when
   the subtype's :c:member:`~PyTypeObject.tp_getattr` and :c:member:`~PyTypeObject.tp_getattro` are both *NULL*.

.. c:member:: setattrfunc PyTypeObject.tp_setattr

   An optional pointer to the function for setting and deleting attributes.

   This field is deprecated.  When it is defined, it should point to a function
   that acts the same as the :c:member:`~PyTypeObject.tp_setattro` function, but taking a C string
   instead of a Python string object to give the attribute name.

   **Inheritance:**

   Group: :attr:`tp_setattr`, :attr:`tp_setattro`

   This field is inherited by subtypes together with :c:member:`~PyTypeObject.tp_setattro`: a subtype
   inherits both :c:member:`~PyTypeObject.tp_setattr` and :c:member:`~PyTypeObject.tp_setattro` from its base type when
   the subtype's :c:member:`~PyTypeObject.tp_setattr` and :c:member:`~PyTypeObject.tp_setattro` are both *NULL*.

.. c:member:: PyAsyncMethods* PyTypeObject.tp_as_async

   Pointer to an additional structure that contains fields relevant only to
   objects which implement :term:`awaitable` and :term:`asynchronous iterator`
   protocols at the C-level.  See :ref:`async-structs` for details.

   .. versionadded:: 3.5
      Formerly known as ``tp_compare`` and ``tp_reserved``.

   **Inheritance:**

   The :c:member:`~PyTypeObject.tp_as_async` field is not inherited,
   but the contained fields are inherited individually.

.. c:member:: reprfunc PyTypeObject.tp_repr

   .. index:: builtin: repr

   An optional pointer to a function that implements the built-in function
   :func:`repr`.

   The signature is the same as for :c:func:`PyObject_Repr`::

      PyObject *tp_repr(PyObject *self);

   The function must return a string or a Unicode object.  Ideally,
   this function should return a string that, when passed to
   :func:`eval`, given a suitable environment, returns an object with the
   same value.  If this is not feasible, it should return a string starting with
   ``'<'`` and ending with ``'>'`` from which both the type and the value of the
   object can be deduced.

   **Inheritance:**

   This field is inherited by subtypes.

   **Default:**

   When this field is not set, a string of the form ``<%s object at %p>`` is
   returned, where ``%s`` is replaced by the type name, and ``%p`` by the object's
   memory address.

.. c:member:: PyNumberMethods* PyTypeObject.tp_as_number

   Pointer to an additional structure that contains fields relevant only to
   objects which implement the number protocol.  These fields are documented in
   :ref:`number-structs`.

   **Inheritance:**

   The :c:member:`~PyTypeObject.tp_as_number` field is not inherited, but the contained fields are
   inherited individually.

.. c:member:: PySequenceMethods* PyTypeObject.tp_as_sequence

   Pointer to an additional structure that contains fields relevant only to
   objects which implement the sequence protocol.  These fields are documented
   in :ref:`sequence-structs`.

   **Inheritance:**

   The :c:member:`~PyTypeObject.tp_as_sequence` field is not inherited, but the contained fields
   are inherited individually.

.. c:member:: PyMappingMethods* PyTypeObject.tp_as_mapping

   Pointer to an additional structure that contains fields relevant only to
   objects which implement the mapping protocol.  These fields are documented in
   :ref:`mapping-structs`.

   **Inheritance:**

   The :c:member:`~PyTypeObject.tp_as_mapping` field is not inherited, but the contained fields
   are inherited individually.

.. c:member:: hashfunc PyTypeObject.tp_hash

   .. index:: builtin: hash

   An optional pointer to a function that implements the built-in function
   :func:`hash`.

   The signature is the same as for :c:func:`PyObject_Hash`::

      Py_hash_t tp_hash(PyObject *);

   The value ``-1`` should not be returned as a
   normal return value; when an error occurs during the computation of the hash
   value, the function should set an exception and return ``-1``.

   When this field is not set (*and* :attr:`tp_richcompare` is not set),
   an attempt to take the hash of the object raises :exc:`TypeError`.
   This is the same as setting it to :c:func:`PyObject_HashNotImplemented`.

   This field can be set explicitly to :c:func:`PyObject_HashNotImplemented` to
   block inheritance of the hash method from a parent type. This is interpreted
   as the equivalent of ``__hash__ = None`` at the Python level, causing
   ``isinstance(o, collections.Hashable)`` to correctly return ``False``. Note
   that the converse is also true - setting ``__hash__ = None`` on a class at
   the Python level will result in the ``tp_hash`` slot being set to
   :c:func:`PyObject_HashNotImplemented`.

   **Inheritance:**

   Group: :attr:`tp_hash`, :attr:`tp_richcompare`

   This field is inherited by subtypes together with
   :c:member:`~PyTypeObject.tp_richcompare`: a subtype inherits both of
   :c:member:`~PyTypeObject.tp_richcompare` and :c:member:`~PyTypeObject.tp_hash`, when the subtype's
   :c:member:`~PyTypeObject.tp_richcompare` and :c:member:`~PyTypeObject.tp_hash` are both *NULL*.

.. c:member:: ternaryfunc PyTypeObject.tp_call

   An optional pointer to a function that implements calling the object.  This
   should be *NULL* if the object is not callable.  The signature is the same as
   for :c:func:`PyObject_Call`::

      PyObject *tp_call(PyObject *self, PyObject *args, PyObject *kwargs);

   **Inheritance:**

   This field is inherited by subtypes.

.. c:member:: reprfunc PyTypeObject.tp_str

   An optional pointer to a function that implements the built-in operation
   :func:`str`.  (Note that :class:`str` is a type now, and :func:`str` calls the
   constructor for that type.  This constructor calls :c:func:`PyObject_Str` to do
   the actual work, and :c:func:`PyObject_Str` will call this handler.)

   The signature is the same as for :c:func:`PyObject_Str`::

      PyObject *tp_str(PyObject *self);

   The function must return a string or a Unicode object.  It should be a "friendly" string
   representation of the object, as this is the representation that will be used,
   among other things, by the :func:`print` function.

   **Inheritance:**

   This field is inherited by subtypes.

   **Default:**

   When this field is not set, :c:func:`PyObject_Repr` is called to return a string
   representation.

.. c:member:: getattrofunc PyTypeObject.tp_getattro

   An optional pointer to the get-attribute function.

   The signature is the same as for :c:func:`PyObject_GetAttr`::

      PyObject *tp_getattro(PyObject *self, PyObject *attr);

   It is usually convenient to set this field to :c:func:`PyObject_GenericGetAttr`,
   which implements the normal way of looking for object attributes.

   **Inheritance:**

   Group: :attr:`tp_getattr`, :attr:`tp_getattro`

   This field is inherited by subtypes together with :c:member:`~PyTypeObject.tp_getattr`: a subtype
   inherits both :c:member:`~PyTypeObject.tp_getattr` and :c:member:`~PyTypeObject.tp_getattro` from its base type when
   the subtype's :c:member:`~PyTypeObject.tp_getattr` and :c:member:`~PyTypeObject.tp_getattro` are both *NULL*.

   **Default:**

   :c:type:`PyBaseObject_Type` uses :c:func:`PyObject_GenericGetAttr`.

.. c:member:: setattrofunc PyTypeObject.tp_setattro

   An optional pointer to the function for setting and deleting attributes.

   The signature is the same as for :c:func:`PyObject_SetAttr`::

      PyObject *tp_setattro(PyObject *self, PyObject *attr, PyObject *value);

   In addition, setting *value* to *NULL* to delete an attribute must be
   supported.  It is usually convenient to set this field to
   :c:func:`PyObject_GenericSetAttr`, which implements the normal
   way of setting object attributes.

   **Inheritance:**

   Group: :attr:`tp_setattr`, :attr:`tp_setattro`

   This field is inherited by subtypes together with :c:member:`~PyTypeObject.tp_setattr`: a subtype
   inherits both :c:member:`~PyTypeObject.tp_setattr` and :c:member:`~PyTypeObject.tp_setattro` from its base type when
   the subtype's :c:member:`~PyTypeObject.tp_setattr` and :c:member:`~PyTypeObject.tp_setattro` are both *NULL*.

   **Default:**

   :c:type:`PyBaseObject_Type` uses :c:func:`PyObject_GenericSetAttr`.

.. c:member:: PyBufferProcs* PyTypeObject.tp_as_buffer

   Pointer to an additional structure that contains fields relevant only to objects
   which implement the buffer interface.  These fields are documented in
   :ref:`buffer-structs`.

   **Inheritance:**

   The :c:member:`~PyTypeObject.tp_as_buffer` field is not inherited,
   but the contained fields are inherited individually.

.. c:member:: unsigned long PyTypeObject.tp_flags

   This field is a bit mask of various flags.  Some flags indicate variant
   semantics for certain situations; others are used to indicate that certain
   fields in the type object (or in the extension structures referenced via
   :c:member:`~PyTypeObject.tp_as_number`, :c:member:`~PyTypeObject.tp_as_sequence`, :c:member:`~PyTypeObject.tp_as_mapping`, and
   :c:member:`~PyTypeObject.tp_as_buffer`) that were historically not always present are valid; if
   such a flag bit is clear, the type fields it guards must not be accessed and
   must be considered to have a zero or *NULL* value instead.

   **Inheritance:**

   Inheritance of this field is complicated.  Most flag bits are inherited
   individually, i.e. if the base type has a flag bit set, the subtype inherits
   this flag bit.  The flag bits that pertain to extension structures are strictly
   inherited if the extension structure is inherited, i.e. the base type's value of
   the flag bit is copied into the subtype together with a pointer to the extension
   structure.  The :const:`Py_TPFLAGS_HAVE_GC` flag bit is inherited together with
   the :c:member:`~PyTypeObject.tp_traverse` and :c:member:`~PyTypeObject.tp_clear` fields, i.e. if the
   :const:`Py_TPFLAGS_HAVE_GC` flag bit is clear in the subtype and the
   :c:member:`~PyTypeObject.tp_traverse` and :c:member:`~PyTypeObject.tp_clear` fields in the subtype exist and have
   *NULL* values.

   .. XXX are most flag bits *really* inherited individually?

   **Default:**

   :c:type:`PyBaseObject_Type` uses
   ``Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE``.

   **Bit Masks:**

   The following bit masks are currently defined; these can be ORed together using
   the ``|`` operator to form the value of the :c:member:`~PyTypeObject.tp_flags` field.  The macro
   :c:func:`PyType_HasFeature` takes a type and a flags value, *tp* and *f*, and
   checks whether ``tp->tp_flags & f`` is non-zero.

   .. data:: Py_TPFLAGS_HEAPTYPE

      This bit is set when the type object itself is allocated on the heap.  In this
      case, the :attr:`ob_type` field of its instances is considered a reference to
      the type, and the type object is INCREF'ed when a new instance is created, and
      DECREF'ed when an instance is destroyed (this does not apply to instances of
      subtypes; only the type referenced by the instance's ob_type gets INCREF'ed or
      DECREF'ed).

      **Inheritance:**

      ???


   .. data:: Py_TPFLAGS_BASETYPE

      This bit is set when the type can be used as the base type of another type.  If
      this bit is clear, the type cannot be subtyped (similar to a "final" class in
      Java).

      **Inheritance:**

      ???


   .. data:: Py_TPFLAGS_READY

      This bit is set when the type object has been fully initialized by
      :c:func:`PyType_Ready`.

      **Inheritance:**

      ???


   .. data:: Py_TPFLAGS_READYING

      This bit is set while :c:func:`PyType_Ready` is in the process of initializing
      the type object.

      **Inheritance:**

      ???


   .. data:: Py_TPFLAGS_HAVE_GC

      This bit is set when the object supports garbage collection.  If this bit
      is set, instances must be created using :c:func:`PyObject_GC_New` and
      destroyed using :c:func:`PyObject_GC_Del`.  More information in section
      :ref:`supporting-cycle-detection`.  This bit also implies that the
      GC-related fields :c:member:`~PyTypeObject.tp_traverse` and :c:member:`~PyTypeObject.tp_clear` are present in
      the type object.

      **Inheritance:**

      Group: :const:`Py_TPFLAGS_HAVE_GC`, :attr:`tp_traverse`, :attr:`tp_clear`

      The :const:`Py_TPFLAGS_HAVE_GC` flag bit is inherited
      together with the :attr:`tp_traverse` and :attr:`tp_clear`
      fields, i.e.  if the :const:`Py_TPFLAGS_HAVE_GC` flag bit is
      clear in the subtype and the :attr:`tp_traverse` and
      :attr:`tp_clear` fields in the subtype exist and have *NULL*
      values.


   .. data:: Py_TPFLAGS_DEFAULT

      This is a bitmask of all the bits that pertain to the existence of certain
      fields in the type object and its extension structures. Currently, it includes
      the following bits: :const:`Py_TPFLAGS_HAVE_STACKLESS_EXTENSION`,
      :const:`Py_TPFLAGS_HAVE_VERSION_TAG`.

      **Inheritance:**

      ???


   .. data:: Py_TPFLAGS_METHOD_DESCRIPTOR

      This bit indicates that objects behave like unbound methods.

      If this flag is set for ``type(meth)``, then:

      - ``meth.__get__(obj, cls)(*args, **kwds)`` (with ``obj`` not None)
        must be equivalent to ``meth(obj, *args, **kwds)``.

      - ``meth.__get__(None, cls)(*args, **kwds)``
        must be equivalent to ``meth(*args, **kwds)``.

      This flag enables an optimization for typical method calls like
      ``obj.meth()``: it avoids creating a temporary "bound method" object for
      ``obj.meth``.

      .. versionadded:: 3.8

      **Inheritance:**

      This flag is never inherited by heap types.
      For extension types, it is inherited whenever
      :c:member:`~PyTypeObject.tp_descr_get` is inherited.


   .. XXX Document more flags here?


   .. data:: Py_TPFLAGS_LONG_SUBCLASS
   .. data:: Py_TPFLAGS_LIST_SUBCLASS
   .. data:: Py_TPFLAGS_TUPLE_SUBCLASS
   .. data:: Py_TPFLAGS_BYTES_SUBCLASS
   .. data:: Py_TPFLAGS_UNICODE_SUBCLASS
   .. data:: Py_TPFLAGS_DICT_SUBCLASS
   .. data:: Py_TPFLAGS_BASE_EXC_SUBCLASS
   .. data:: Py_TPFLAGS_TYPE_SUBCLASS

      These flags are used by functions such as
      :c:func:`PyLong_Check` to quickly determine if a type is a subclass
      of a built-in type; such specific checks are faster than a generic
      check, like :c:func:`PyObject_IsInstance`. Custom types that inherit
      from built-ins should have their :c:member:`~PyTypeObject.tp_flags`
      set appropriately, or the code that interacts with such types
      will behave differently depending on what kind of check is used.


   .. data:: Py_TPFLAGS_HAVE_FINALIZE

      This bit is set when the :c:member:`~PyTypeObject.tp_finalize` slot is present in the
      type structure.

      .. versionadded:: 3.4

      .. deprecated:: 3.8
         This flag isn't necessary anymore, as the interpreter assumes the
         :c:member:`~PyTypeObject.tp_finalize` slot is always present in the
         type structure.

   .. data:: _Py_TPFLAGS_HAVE_VECTORCALL

      This bit is set when the class implements the vectorcall protocol.
      See :c:member:`~PyTypeObject.tp_vectorcall_offset` for details.

      **Inheritance:**

      This bit is set on *static* subtypes if ``tp_flags`` is not overridden:
      a subtype inherits ``_Py_TPFLAGS_HAVE_VECTORCALL`` from its base type
      when the subtype’s :c:member:`~PyTypeObject.tp_call` is NULL
      and the subtype's ``Py_TPFLAGS_HEAPTYPE`` is not set.

      `Heap types`_ do not inherit ``_Py_TPFLAGS_HAVE_VECTORCALL``.

      .. note::

         This flag is provisional and expected to become public in Python 3.9,
         with a different name and, possibly, changed semantics.
         If you use vectorcall, plan for updating your code for Python 3.9.

      .. versionadded:: 3.8

.. c:member:: const char* PyTypeObject.tp_doc

   An optional pointer to a NUL-terminated C string giving the docstring for this
   type object.  This is exposed as the :attr:`__doc__` attribute on the type and
   instances of the type.

   **Inheritance:**

   This field is *not* inherited by subtypes.

.. c:member:: traverseproc PyTypeObject.tp_traverse

   An optional pointer to a traversal function for the garbage collector.  This is
   only used if the :const:`Py_TPFLAGS_HAVE_GC` flag bit is set.  The signature is::

      int tp_traverse(PyObject *self, visitproc visit, void *arg);

   More information about Python's garbage collection scheme can be found
   in section :ref:`supporting-cycle-detection`.

   The :c:member:`~PyTypeObject.tp_traverse` pointer is used by the garbage collector to detect
   reference cycles. A typical implementation of a :c:member:`~PyTypeObject.tp_traverse` function
   simply calls :c:func:`Py_VISIT` on each of the instance's members that are Python
   objects.  For example, this is function :c:func:`local_traverse` from the
   :mod:`_thread` extension module::

      static int
      local_traverse(localobject *self, visitproc visit, void *arg)
      {
          Py_VISIT(self->args);
          Py_VISIT(self->kw);
          Py_VISIT(self->dict);
          return 0;
      }

   Note that :c:func:`Py_VISIT` is called only on those members that can participate
   in reference cycles.  Although there is also a ``self->key`` member, it can only
   be *NULL* or a Python string and therefore cannot be part of a reference cycle.

   On the other hand, even if you know a member can never be part of a cycle, as a
   debugging aid you may want to visit it anyway just so the :mod:`gc` module's
   :func:`~gc.get_referents` function will include it.

   Note that :c:func:`Py_VISIT` requires the *visit* and *arg* parameters to
   :c:func:`local_traverse` to have these specific names; don't name them just
   anything.

   **Inheritance:**

   Group: :const:`Py_TPFLAGS_HAVE_GC`, :attr:`tp_traverse`, :attr:`tp_clear`

   This field is inherited by subtypes together with :c:member:`~PyTypeObject.tp_clear` and the
   :const:`Py_TPFLAGS_HAVE_GC` flag bit: the flag bit, :c:member:`~PyTypeObject.tp_traverse`, and
   :c:member:`~PyTypeObject.tp_clear` are all inherited from the base type if they are all zero in
   the subtype.

.. c:member:: inquiry PyTypeObject.tp_clear

   An optional pointer to a clear function for the garbage collector. This is only
   used if the :const:`Py_TPFLAGS_HAVE_GC` flag bit is set.  The signature is::

      int tp_clear(PyObject *);

   The :c:member:`~PyTypeObject.tp_clear` member function is used to break reference cycles in cyclic
   garbage detected by the garbage collector.  Taken together, all :c:member:`~PyTypeObject.tp_clear`
   functions in the system must combine to break all reference cycles.  This is
   subtle, and if in any doubt supply a :c:member:`~PyTypeObject.tp_clear` function.  For example,
   the tuple type does not implement a :c:member:`~PyTypeObject.tp_clear` function, because it's
   possible to prove that no reference cycle can be composed entirely of tuples.
   Therefore the :c:member:`~PyTypeObject.tp_clear` functions of other types must be sufficient to
   break any cycle containing a tuple.  This isn't immediately obvious, and there's
   rarely a good reason to avoid implementing :c:member:`~PyTypeObject.tp_clear`.

   Implementations of :c:member:`~PyTypeObject.tp_clear` should drop the instance's references to
   those of its members that may be Python objects, and set its pointers to those
   members to *NULL*, as in the following example::

      static int
      local_clear(localobject *self)
      {
          Py_CLEAR(self->key);
          Py_CLEAR(self->args);
          Py_CLEAR(self->kw);
          Py_CLEAR(self->dict);
          return 0;
      }

   The :c:func:`Py_CLEAR` macro should be used, because clearing references is
   delicate:  the reference to the contained object must not be decremented until
   after the pointer to the contained object is set to *NULL*.  This is because
   decrementing the reference count may cause the contained object to become trash,
   triggering a chain of reclamation activity that may include invoking arbitrary
   Python code (due to finalizers, or weakref callbacks, associated with the
   contained object). If it's possible for such code to reference *self* again,
   it's important that the pointer to the contained object be *NULL* at that time,
   so that *self* knows the contained object can no longer be used.  The
   :c:func:`Py_CLEAR` macro performs the operations in a safe order.

   Because the goal of :c:member:`~PyTypeObject.tp_clear` functions is to break reference cycles,
   it's not necessary to clear contained objects like Python strings or Python
   integers, which can't participate in reference cycles. On the other hand, it may
   be convenient to clear all contained Python objects, and write the type's
   :c:member:`~PyTypeObject.tp_dealloc` function to invoke :c:member:`~PyTypeObject.tp_clear`.

   More information about Python's garbage collection scheme can be found in
   section :ref:`supporting-cycle-detection`.

   **Inheritance:**

   Group: :const:`Py_TPFLAGS_HAVE_GC`, :attr:`tp_traverse`, :attr:`tp_clear`

   This field is inherited by subtypes together with :c:member:`~PyTypeObject.tp_traverse` and the
   :const:`Py_TPFLAGS_HAVE_GC` flag bit: the flag bit, :c:member:`~PyTypeObject.tp_traverse`, and
   :c:member:`~PyTypeObject.tp_clear` are all inherited from the base type if they are all zero in
   the subtype.

.. c:member:: richcmpfunc PyTypeObject.tp_richcompare

   An optional pointer to the rich comparison function, whose signature is::

      PyObject *tp_richcompare(PyObject *self, PyObject *other, int op);

   The first parameter is guaranteed to be an instance of the type
   that is defined by :c:type:`PyTypeObject`.

   The function should return the result of the comparison (usually ``Py_True``
   or ``Py_False``).  If the comparison is undefined, it must return
   ``Py_NotImplemented``, if another error occurred it must return *NULL* and
   set an exception condition.

   The following constants are defined to be used as the third argument for
   :c:member:`~PyTypeObject.tp_richcompare` and for :c:func:`PyObject_RichCompare`:

   +----------------+------------+
   | Constant       | Comparison |
   +================+============+
   | :const:`Py_LT` | ``<``      |
   +----------------+------------+
   | :const:`Py_LE` | ``<=``     |
   +----------------+------------+
   | :const:`Py_EQ` | ``==``     |
   +----------------+------------+
   | :const:`Py_NE` | ``!=``     |
   +----------------+------------+
   | :const:`Py_GT` | ``>``      |
   +----------------+------------+
   | :const:`Py_GE` | ``>=``     |
   +----------------+------------+

   The following macro is defined to ease writing rich comparison functions:

   .. c:function:: PyObject \*Py_RETURN_RICHCOMPARE(VAL_A, VAL_B, int op)

      Return ``Py_True`` or ``Py_False`` from the function, depending on the
      result of a comparison.
      VAL_A and VAL_B must be orderable by C comparison operators (for example,
      they may be C ints or floats). The third argument specifies the requested
      operation, as for :c:func:`PyObject_RichCompare`.

      The return value's reference count is properly incremented.

      On error, sets an exception and returns *NULL* from the function.

      .. versionadded:: 3.7

   **Inheritance:**

   Group: :attr:`tp_hash`, :attr:`tp_richcompare`

   This field is inherited by subtypes together with :c:member:`~PyTypeObject.tp_hash`:
   a subtype inherits :c:member:`~PyTypeObject.tp_richcompare` and :c:member:`~PyTypeObject.tp_hash` when
   the subtype's :c:member:`~PyTypeObject.tp_richcompare` and :c:member:`~PyTypeObject.tp_hash` are both
   *NULL*.

   **Default:**

   :c:type:`PyBaseObject_Type` provides a :attr:`tp_richcompare`
   implementation, which may be inherited.  However, if only
   :attr:`tp_hash` is defined, not even the inherited function is used
   and instances of the type will not be able to participate in any
   comparisons.

.. c:member:: Py_ssize_t PyTypeObject.tp_weaklistoffset

   If the instances of this type are weakly referenceable, this field is greater
   than zero and contains the offset in the instance structure of the weak
   reference list head (ignoring the GC header, if present); this offset is used by
   :c:func:`PyObject_ClearWeakRefs` and the :c:func:`PyWeakref_\*` functions.  The
   instance structure needs to include a field of type :c:type:`PyObject\*` which is
   initialized to *NULL*.

   Do not confuse this field with :c:member:`~PyTypeObject.tp_weaklist`; that is the list head for
   weak references to the type object itself.

   **Inheritance:**

   This field is inherited by subtypes, but see the rules listed below. A subtype
   may override this offset; this means that the subtype uses a different weak
   reference list head than the base type.  Since the list head is always found via
   :c:member:`~PyTypeObject.tp_weaklistoffset`, this should not be a problem.

   When a type defined by a class statement has no :attr:`~object.__slots__` declaration,
   and none of its base types are weakly referenceable, the type is made weakly
   referenceable by adding a weak reference list head slot to the instance layout
   and setting the :c:member:`~PyTypeObject.tp_weaklistoffset` of that slot's offset.

   When a type's :attr:`__slots__` declaration contains a slot named
   :attr:`__weakref__`, that slot becomes the weak reference list head for
   instances of the type, and the slot's offset is stored in the type's
   :c:member:`~PyTypeObject.tp_weaklistoffset`.

   When a type's :attr:`__slots__` declaration does not contain a slot named
   :attr:`__weakref__`, the type inherits its :c:member:`~PyTypeObject.tp_weaklistoffset` from its
   base type.

.. c:member:: getiterfunc PyTypeObject.tp_iter

   An optional pointer to a function that returns an iterator for the object.  Its
   presence normally signals that the instances of this type are iterable (although
   sequences may be iterable without this function).

   This function has the same signature as :c:func:`PyObject_GetIter`::

      PyObject *tp_iter(PyObject *self);

   **Inheritance:**

   This field is inherited by subtypes.

.. c:member:: iternextfunc PyTypeObject.tp_iternext

   An optional pointer to a function that returns the next item in an iterator.
   The signature is::

      PyObject *tp_iternext(PyObject *self);

   When the iterator is exhausted, it must return *NULL*; a :exc:`StopIteration`
   exception may or may not be set.  When another error occurs, it must return
   *NULL* too.  Its presence signals that the instances of this type are
   iterators.

   Iterator types should also define the :c:member:`~PyTypeObject.tp_iter` function, and that
   function should return the iterator instance itself (not a new iterator
   instance).

   This function has the same signature as :c:func:`PyIter_Next`.

   **Inheritance:**

   This field is inherited by subtypes.

.. c:member:: struct PyMethodDef* PyTypeObject.tp_methods

   An optional pointer to a static *NULL*-terminated array of :c:type:`PyMethodDef`
   structures, declaring regular methods of this type.

   For each entry in the array, an entry is added to the type's dictionary (see
   :c:member:`~PyTypeObject.tp_dict` below) containing a method descriptor.

   **Inheritance:**

   This field is not inherited by subtypes (methods are inherited through a
   different mechanism).

.. c:member:: struct PyMemberDef* PyTypeObject.tp_members

   An optional pointer to a static *NULL*-terminated array of :c:type:`PyMemberDef`
   structures, declaring regular data members (fields or slots) of instances of
   this type.

   For each entry in the array, an entry is added to the type's dictionary (see
   :c:member:`~PyTypeObject.tp_dict` below) containing a member descriptor.

   **Inheritance:**

   This field is not inherited by subtypes (members are inherited through a
   different mechanism).

.. c:member:: struct PyGetSetDef* PyTypeObject.tp_getset

   An optional pointer to a static *NULL*-terminated array of :c:type:`PyGetSetDef`
   structures, declaring computed attributes of instances of this type.

   For each entry in the array, an entry is added to the type's dictionary (see
   :c:member:`~PyTypeObject.tp_dict` below) containing a getset descriptor.

   **Inheritance:**

   This field is not inherited by subtypes (computed attributes are inherited
   through a different mechanism).

.. c:member:: PyTypeObject* PyTypeObject.tp_base

   An optional pointer to a base type from which type properties are inherited.  At
   this level, only single inheritance is supported; multiple inheritance require
   dynamically creating a type object by calling the metatype.

   .. note::

       .. from Modules/xxmodule.c

       Slot initialization is subject to the rules of initializing globals.
       C99 requires the initializers to be "address constants".  Function
       designators like :c:func:`PyType_GenericNew`, with implicit conversion
       to a pointer, are valid C99 address constants.

       However, the unary '&' operator applied to a non-static variable
       like :c:func:`PyBaseObject_Type` is not required to produce an address
       constant.  Compilers may support this (gcc does), MSVC does not.
       Both compilers are strictly standard conforming in this particular
       behavior.

       Consequently, :c:member:`~PyTypeObject.tp_base` should be set in
       the extension module's init function.

   **Inheritance:**

   This field is not inherited by subtypes (obviously).

   **Default:**

   This field defaults to ``&PyBaseObject_Type`` (which to Python
   programmers is known as the type :class:`object`).

.. c:member:: PyObject* PyTypeObject.tp_dict

   The type's dictionary is stored here by :c:func:`PyType_Ready`.

   This field should normally be initialized to *NULL* before PyType_Ready is
   called; it may also be initialized to a dictionary containing initial attributes
   for the type.  Once :c:func:`PyType_Ready` has initialized the type, extra
   attributes for the type may be added to this dictionary only if they don't
   correspond to overloaded operations (like :meth:`__add__`).

   **Inheritance:**

   This field is not inherited by subtypes (though the attributes defined in here
   are inherited through a different mechanism).

   **Default:**

   If this field is *NULL*, :c:func:`PyType_Ready` will assign a new
   dictionary to it.

   .. warning::

      It is not safe to use :c:func:`PyDict_SetItem` on or otherwise modify
      :c:member:`~PyTypeObject.tp_dict` with the dictionary C-API.

.. c:member:: descrgetfunc PyTypeObject.tp_descr_get

   An optional pointer to a "descriptor get" function.

   The function signature is::

      PyObject * tp_descr_get(PyObject *self, PyObject *obj, PyObject *type);

   .. XXX explain more?

   **Inheritance:**

   This field is inherited by subtypes.

.. c:member:: descrsetfunc PyTypeObject.tp_descr_set

   An optional pointer to a function for setting and deleting
   a descriptor's value.

   The function signature is::

      int tp_descr_set(PyObject *self, PyObject *obj, PyObject *value);

   The *value* argument is set to *NULL* to delete the value.

   .. XXX explain more?

   **Inheritance:**

   This field is inherited by subtypes.

.. c:member:: Py_ssize_t PyTypeObject.tp_dictoffset

   If the instances of this type have a dictionary containing instance variables,
   this field is non-zero and contains the offset in the instances of the type of
   the instance variable dictionary; this offset is used by
   :c:func:`PyObject_GenericGetAttr`.

   Do not confuse this field with :c:member:`~PyTypeObject.tp_dict`; that is the dictionary for
   attributes of the type object itself.

   If the value of this field is greater than zero, it specifies the offset from
   the start of the instance structure.  If the value is less than zero, it
   specifies the offset from the *end* of the instance structure.  A negative
   offset is more expensive to use, and should only be used when the instance
   structure contains a variable-length part.  This is used for example to add an
   instance variable dictionary to subtypes of :class:`str` or :class:`tuple`. Note
   that the :c:member:`~PyTypeObject.tp_basicsize` field should account for the dictionary added to
   the end in that case, even though the dictionary is not included in the basic
   object layout.  On a system with a pointer size of 4 bytes,
   :c:member:`~PyTypeObject.tp_dictoffset` should be set to ``-4`` to indicate that the dictionary is
   at the very end of the structure.

   The real dictionary offset in an instance can be computed from a negative
   :c:member:`~PyTypeObject.tp_dictoffset` as follows::

      dictoffset = tp_basicsize + abs(ob_size)*tp_itemsize + tp_dictoffset
      if dictoffset is not aligned on sizeof(void*):
          round up to sizeof(void*)

   where :c:member:`~PyTypeObject.tp_basicsize`, :c:member:`~PyTypeObject.tp_itemsize` and :c:member:`~PyTypeObject.tp_dictoffset` are
   taken from the type object, and :attr:`ob_size` is taken from the instance.  The
   absolute value is taken because ints use the sign of :attr:`ob_size` to
   store the sign of the number.  (There's never a need to do this calculation
   yourself; it is done for you by :c:func:`_PyObject_GetDictPtr`.)

   **Inheritance:**

   This field is inherited by subtypes, but see the rules listed below. A subtype
   may override this offset; this means that the subtype instances store the
   dictionary at a difference offset than the base type.  Since the dictionary is
   always found via :c:member:`~PyTypeObject.tp_dictoffset`, this should not be a problem.

   When a type defined by a class statement has no :attr:`~object.__slots__` declaration,
   and none of its base types has an instance variable dictionary, a dictionary
   slot is added to the instance layout and the :c:member:`~PyTypeObject.tp_dictoffset` is set to
   that slot's offset.

   When a type defined by a class statement has a :attr:`__slots__` declaration,
   the type inherits its :c:member:`~PyTypeObject.tp_dictoffset` from its base type.

   (Adding a slot named :attr:`~object.__dict__` to the :attr:`__slots__` declaration does
   not have the expected effect, it just causes confusion.  Maybe this should be
   added as a feature just like :attr:`__weakref__` though.)

   **Default:**

   This slot has no default.  For static types, if the field is
   *NULL* then no :attr:`__dict__` gets created for instances.

.. c:member:: initproc PyTypeObject.tp_init

   An optional pointer to an instance initialization function.

   This function corresponds to the :meth:`__init__` method of classes.  Like
   :meth:`__init__`, it is possible to create an instance without calling
   :meth:`__init__`, and it is possible to reinitialize an instance by calling its
   :meth:`__init__` method again.

   The function signature is::

      int tp_init(PyObject *self, PyObject *args, PyObject *kwds);

   The self argument is the instance to be initialized; the *args* and *kwds*
   arguments represent positional and keyword arguments of the call to
   :meth:`__init__`.

   The :c:member:`~PyTypeObject.tp_init` function, if not *NULL*, is called when an instance is
   created normally by calling its type, after the type's :c:member:`~PyTypeObject.tp_new` function
   has returned an instance of the type.  If the :c:member:`~PyTypeObject.tp_new` function returns an
   instance of some other type that is not a subtype of the original type, no
   :c:member:`~PyTypeObject.tp_init` function is called; if :c:member:`~PyTypeObject.tp_new` returns an instance of a
   subtype of the original type, the subtype's :c:member:`~PyTypeObject.tp_init` is called.

   Returns ``0`` on success, ``-1`` and sets an exception on error.

   **Inheritance:**

   This field is inherited by subtypes.

   **Default:**

   For static types this field does not have a default.

.. c:member:: allocfunc PyTypeObject.tp_alloc

   An optional pointer to an instance allocation function.

   The function signature is::

      PyObject *tp_alloc(PyTypeObject *self, Py_ssize_t nitems);

   **Inheritance:**

   This field is inherited by static subtypes, but not by dynamic
   subtypes (subtypes created by a class statement).

   **Default:**

   For dynamic subtypes, this field is always set to
   :c:func:`PyType_GenericAlloc`, to force a standard heap
   allocation strategy.

   For static subtypes, :c:type:`PyBaseObject_Type` uses
   :c:func:`PyType_GenericAlloc`.  That is the recommended value
   for all statically defined types.

.. c:member:: newfunc PyTypeObject.tp_new

   An optional pointer to an instance creation function.

   The function signature is::

      PyObject *tp_new(PyTypeObject *subtype, PyObject *args, PyObject *kwds);

   The subtype argument is the type of the object being created; the *args* and
   *kwds* arguments represent positional and keyword arguments of the call to the
   type.  Note that subtype doesn't have to equal the type whose :c:member:`~PyTypeObject.tp_new`
   function is called; it may be a subtype of that type (but not an unrelated
   type).

   The :c:member:`~PyTypeObject.tp_new` function should call ``subtype->tp_alloc(subtype, nitems)``
   to allocate space for the object, and then do only as much further
   initialization as is absolutely necessary.  Initialization that can safely be
   ignored or repeated should be placed in the :c:member:`~PyTypeObject.tp_init` handler.  A good
   rule of thumb is that for immutable types, all initialization should take place
   in :c:member:`~PyTypeObject.tp_new`, while for mutable types, most initialization should be
   deferred to :c:member:`~PyTypeObject.tp_init`.

   **Inheritance:**

   This field is inherited by subtypes, except it is not inherited by static types
   whose :c:member:`~PyTypeObject.tp_base` is *NULL* or ``&PyBaseObject_Type``.

   **Default:**

   For static types this field has no default.  This means if the
   slot is defined as *NULL*, the type cannot be called to create new
   instances; presumably there is some other way to create
   instances, like a factory function.

.. c:member:: freefunc PyTypeObject.tp_free

   An optional pointer to an instance deallocation function.  Its signature is::

      void tp_free(void *self);

   An initializer that is compatible with this signature is :c:func:`PyObject_Free`.

   **Inheritance:**

   This field is inherited by static subtypes, but not by dynamic
   subtypes (subtypes created by a class statement)

   **Default:**

   In dynamic subtypes, this field is set to a deallocator suitable to
   match :c:func:`PyType_GenericAlloc` and the value of the
   :const:`Py_TPFLAGS_HAVE_GC` flag bit.

   For static subtypes, :c:type:`PyBaseObject_Type` uses PyObject_Del.

.. c:member:: inquiry PyTypeObject.tp_is_gc

   An optional pointer to a function called by the garbage collector.

   The garbage collector needs to know whether a particular object is collectible
   or not.  Normally, it is sufficient to look at the object's type's
   :c:member:`~PyTypeObject.tp_flags` field, and check the :const:`Py_TPFLAGS_HAVE_GC` flag bit.  But
   some types have a mixture of statically and dynamically allocated instances, and
   the statically allocated instances are not collectible.  Such types should
   define this function; it should return ``1`` for a collectible instance, and
   ``0`` for a non-collectible instance. The signature is::

      int tp_is_gc(PyObject *self);

   (The only example of this are types themselves.  The metatype,
   :c:data:`PyType_Type`, defines this function to distinguish between statically
   and dynamically allocated types.)

   **Inheritance:**

   This field is inherited by subtypes.

   **Default:**

   This slot has no default.  If this field is *NULL*,
   :const:`Py_TPFLAGS_HAVE_GC` is used as the functional equivalent.

.. c:member:: PyObject* PyTypeObject.tp_bases

   Tuple of base types.

   This is set for types created by a class statement.  It should be *NULL* for
   statically defined types.

   **Inheritance:**

   This field is not inherited.

.. c:member:: PyObject* PyTypeObject.tp_mro

   Tuple containing the expanded set of base types, starting with the type itself
   and ending with :class:`object`, in Method Resolution Order.


   **Inheritance:**

   This field is not inherited; it is calculated fresh by
   :c:func:`PyType_Ready`.

.. c:member:: PyObject* PyTypeObject.tp_cache

   Unused.  Internal use only.

   **Inheritance:**

   This field is not inherited.

.. c:member:: PyObject* PyTypeObject.tp_subclasses

   List of weak references to subclasses.  Internal use only.

   **Inheritance:**

   This field is not inherited.

.. c:member:: PyObject* PyTypeObject.tp_weaklist

   Weak reference list head, for weak references to this type object.  Not
   inherited.  Internal use only.

   **Inheritance:**

   This field is not inherited.

.. c:member:: destructor PyTypeObject.tp_del

   This field is deprecated.  Use :c:member:`~PyTypeObject.tp_finalize` instead.

.. c:member:: unsigned int PyTypeObject.tp_version_tag

   Used to index into the method cache.  Internal use only.

   **Inheritance:**

   This field is not inherited.

.. c:member:: destructor PyTypeObject.tp_finalize

   An optional pointer to an instance finalization function.  Its signature is::

      void tp_finalize(PyObject *self);

   If :c:member:`~PyTypeObject.tp_finalize` is set, the interpreter calls it once when
   finalizing an instance.  It is called either from the garbage
   collector (if the instance is part of an isolated reference cycle) or
   just before the object is deallocated.  Either way, it is guaranteed
   to be called before attempting to break reference cycles, ensuring
   that it finds the object in a sane state.

   :c:member:`~PyTypeObject.tp_finalize` should not mutate the current exception status;
   therefore, a recommended way to write a non-trivial finalizer is::

      static void
      local_finalize(PyObject *self)
      {
          PyObject *error_type, *error_value, *error_traceback;

          /* Save the current exception, if any. */
          PyErr_Fetch(&error_type, &error_value, &error_traceback);

          /* ... */

          /* Restore the saved exception. */
          PyErr_Restore(error_type, error_value, error_traceback);
      }

   For this field to be taken into account (even through inheritance),
   you must also set the :const:`Py_TPFLAGS_HAVE_FINALIZE` flags bit.

   **Inheritance:**

   This field is inherited by subtypes.

   .. versionadded:: 3.4

   .. seealso:: "Safe object finalization" (:pep:`442`)

The remaining fields are only defined if the feature test macro :const:`COUNT_ALLOCS` is defined, and are for internal use only. They are documented here for completeness. None of these fields are inherited by subtypes.

.. c:member:: Py_ssize_t PyTypeObject.tp_allocs

   Number of allocations.
.. c:member:: Py_ssize_t PyTypeObject.tp_frees

   Number of frees.
.. c:member:: Py_ssize_t PyTypeObject.tp_maxalloc

   Maximum simultaneously allocated objects.
.. c:member:: PyTypeObject* PyTypeObject.tp_prev

   Pointer to the previous type object with a non-zero :c:member:`~PyTypeObject.tp_allocs` field.
.. c:member:: PyTypeObject* PyTypeObject.tp_next

   Pointer to the next type object with a non-zero :c:member:`~PyTypeObject.tp_allocs` field.

Also, note that, in a garbage collected Python, :c:member:`~PyTypeObject.tp_dealloc` may be called from any Python thread, not just the thread which created the object (if the object becomes part of a refcount cycle, that cycle might be collected by a garbage collection on any thread). This is not a problem for Python API calls, since the thread on which tp_dealloc is called will own the Global Interpreter Lock (GIL). However, if the object being destroyed in turn destroys objects from some other C or C++ library, care should be taken to ensure that destroying those objects on the thread which called tp_dealloc will not violate any assumptions of the library.

Heap Types

Traditionally, types defined in C code are static, that is, a static :c:type:`PyTypeObject` structure is defined directly in code and initialized using :c:func:`PyType_Ready`.

This results in types that are limited relative to types defined in Python:

  • Static types are limited to one base, i.e. they cannot use multiple inheritance.
  • Static type objects (but not necessarily their instances) are immutable. It is not possible to add or modify the type object's attributes from Python.
  • Static type objects are shared across :ref:`sub-interpreters <sub-interpreter-support>`, so they should not include any subinterpreter-specific state.

Also, since PyTypeObject is not part of the :ref:`stable ABI <stable>`, any extension modules using static types must be compiled for a specific Python minor version.

An alternative to static types is heap-allocated types, or heap types for short, which correspond closely to classes created by Python's class statement.

This is done by filling a :c:type:`PyType_Spec` structure and calling :c:func:`PyType_FromSpecWithBases`.

Number Object Structures

.. sectionauthor:: Amaury Forgeot d'Arc

.. c:type:: PyNumberMethods

   This structure holds pointers to the functions which an object uses to
   implement the number protocol.  Each function is used by the function of
   similar name documented in the :ref:`number` section.

   .. XXX Drop the definition?

   Here is the structure definition::

       typedef struct {
            binaryfunc nb_add;
            binaryfunc nb_subtract;
            binaryfunc nb_multiply;
            binaryfunc nb_remainder;
            binaryfunc nb_divmod;
            ternaryfunc nb_power;
            unaryfunc nb_negative;
            unaryfunc nb_positive;
            unaryfunc nb_absolute;
            inquiry nb_bool;
            unaryfunc nb_invert;
            binaryfunc nb_lshift;
            binaryfunc nb_rshift;
            binaryfunc nb_and;
            binaryfunc nb_xor;
            binaryfunc nb_or;
            unaryfunc nb_int;
            void *nb_reserved;
            unaryfunc nb_float;

            binaryfunc nb_inplace_add;
            binaryfunc nb_inplace_subtract;
            binaryfunc nb_inplace_multiply;
            binaryfunc nb_inplace_remainder;
            ternaryfunc nb_inplace_power;
            binaryfunc nb_inplace_lshift;
            binaryfunc nb_inplace_rshift;
            binaryfunc nb_inplace_and;
            binaryfunc nb_inplace_xor;
            binaryfunc nb_inplace_or;

            binaryfunc nb_floor_divide;
            binaryfunc nb_true_divide;
            binaryfunc nb_inplace_floor_divide;
            binaryfunc nb_inplace_true_divide;

            unaryfunc nb_index;

            binaryfunc nb_matrix_multiply;
            binaryfunc nb_inplace_matrix_multiply;
       } PyNumberMethods;

   .. note::

      Binary and ternary functions must check the type of all their operands,
      and implement the necessary conversions (at least one of the operands is
      an instance of the defined type).  If the operation is not defined for the
      given operands, binary and ternary functions must return
      ``Py_NotImplemented``, if another error occurred they must return *NULL*
      and set an exception.

   .. note::

      The :c:data:`nb_reserved` field should always be *NULL*.  It
      was previously called :c:data:`nb_long`, and was renamed in
      Python 3.0.1.
.. c:member:: binaryfunc PyNumberMethods.nb_add
.. c:member:: binaryfunc PyNumberMethods.nb_subtract
.. c:member:: binaryfunc PyNumberMethods.nb_multiply
.. c:member:: binaryfunc PyNumberMethods.nb_remainder
.. c:member:: binaryfunc PyNumberMethods.nb_divmod
.. c:member:: ternaryfunc PyNumberMethods.nb_power
.. c:member:: unaryfunc PyNumberMethods.nb_negative
.. c:member:: unaryfunc PyNumberMethods.nb_positive
.. c:member:: unaryfunc PyNumberMethods.nb_absolute
.. c:member:: inquiry PyNumberMethods.nb_bool
.. c:member:: unaryfunc PyNumberMethods.nb_invert
.. c:member:: binaryfunc PyNumberMethods.nb_lshift
.. c:member:: binaryfunc PyNumberMethods.nb_rshift
.. c:member:: binaryfunc PyNumberMethods.nb_and
.. c:member:: binaryfunc PyNumberMethods.nb_xor
.. c:member:: binaryfunc PyNumberMethods.nb_or
.. c:member:: unaryfunc PyNumberMethods.nb_int
.. c:member:: void *PyNumberMethods.nb_reserved
.. c:member:: unaryfunc PyNumberMethods.nb_float
.. c:member:: binaryfunc PyNumberMethods.nb_inplace_add
.. c:member:: binaryfunc PyNumberMethods.nb_inplace_subtract
.. c:member:: binaryfunc PyNumberMethods.nb_inplace_multiply
.. c:member:: binaryfunc PyNumberMethods.nb_inplace_remainder
.. c:member:: ternaryfunc PyNumberMethods.nb_inplace_power
.. c:member:: binaryfunc PyNumberMethods.nb_inplace_lshift
.. c:member:: binaryfunc PyNumberMethods.nb_inplace_rshift
.. c:member:: binaryfunc PyNumberMethods.nb_inplace_and
.. c:member:: binaryfunc PyNumberMethods.nb_inplace_xor
.. c:member:: binaryfunc PyNumberMethods.nb_inplace_or
.. c:member:: binaryfunc PyNumberMethods.nb_floor_divide
.. c:member:: binaryfunc PyNumberMethods.nb_true_divide
.. c:member:: binaryfunc PyNumberMethods.nb_inplace_floor_divide
.. c:member:: binaryfunc PyNumberMethods.nb_inplace_true_divide
.. c:member:: unaryfunc PyNumberMethods.nb_index
.. c:member:: binaryfunc PyNumberMethods.nb_matrix_multiply
.. c:member:: binaryfunc PyNumberMethods.nb_inplace_matrix_multiply

Mapping Object Structures

.. sectionauthor:: Amaury Forgeot d'Arc

.. c:type:: PyMappingMethods

   This structure holds pointers to the functions which an object uses to
   implement the mapping protocol.  It has three members:
.. c:member:: lenfunc PyMappingMethods.mp_length

   This function is used by :c:func:`PyMapping_Size` and
   :c:func:`PyObject_Size`, and has the same signature.  This slot may be set to
   *NULL* if the object has no defined length.
.. c:member:: binaryfunc PyMappingMethods.mp_subscript

   This function is used by :c:func:`PyObject_GetItem` and
   :c:func:`PySequence_GetSlice`, and has the same signature as
   :c:func:`!PyObject_GetItem`.  This slot must be filled for the
   :c:func:`PyMapping_Check` function to return ``1``, it can be *NULL*
   otherwise.
.. c:member:: objobjargproc PyMappingMethods.mp_ass_subscript

   This function is used by :c:func:`PyObject_SetItem`,
   :c:func:`PyObject_DelItem`, :c:func:`PyObject_SetSlice` and
   :c:func:`PyObject_DelSlice`.  It has the same signature as
   :c:func:`!PyObject_SetItem`, but *v* can also be set to *NULL* to delete
   an item.  If this slot is *NULL*, the object does not support item
   assignment and deletion.

Sequence Object Structures

.. sectionauthor:: Amaury Forgeot d'Arc

.. c:type:: PySequenceMethods

   This structure holds pointers to the functions which an object uses to
   implement the sequence protocol.
.. c:member:: lenfunc PySequenceMethods.sq_length

   This function is used by :c:func:`PySequence_Size` and
   :c:func:`PyObject_Size`, and has the same signature.  It is also used for
   handling negative indices via the :c:member:`~PySequenceMethods.sq_item`
   and the :c:member:`~PySequenceMethods.sq_ass_item` slots.
.. c:member:: binaryfunc PySequenceMethods.sq_concat

   This function is used by :c:func:`PySequence_Concat` and has the same
   signature.  It is also used by the ``+`` operator, after trying the numeric
   addition via the :c:member:`~PyNumberMethods.nb_add` slot.
.. c:member:: ssizeargfunc PySequenceMethods.sq_repeat

   This function is used by :c:func:`PySequence_Repeat` and has the same
   signature.  It is also used by the ``*`` operator, after trying numeric
   multiplication via the :c:member:`~PyNumberMethods.nb_multiply` slot.
.. c:member:: ssizeargfunc PySequenceMethods.sq_item

   This function is used by :c:func:`PySequence_GetItem` and has the same
   signature.  It is also used by :c:func:`PyObject_GetItem`, after trying
   the subscription via the :c:member:`~PyMappingMethods.mp_subscript` slot.
   This slot must be filled for the :c:func:`PySequence_Check`
   function to return ``1``, it can be *NULL* otherwise.

   Negative indexes are handled as follows: if the :attr:`sq_length` slot is
   filled, it is called and the sequence length is used to compute a positive
   index which is passed to :attr:`sq_item`.  If :attr:`sq_length` is *NULL*,
   the index is passed as is to the function.
.. c:member:: ssizeobjargproc PySequenceMethods.sq_ass_item

   This function is used by :c:func:`PySequence_SetItem` and has the same
   signature.  It is also used by :c:func:`PyObject_SetItem` and
   :c:func:`PyObject_DelItem`, after trying the item assignment and deletion
   via the :c:member:`~PyMappingMethods.mp_ass_subscript` slot.
   This slot may be left to *NULL* if the object does not support
   item assignment and deletion.
.. c:member:: objobjproc PySequenceMethods.sq_contains

   This function may be used by :c:func:`PySequence_Contains` and has the same
   signature.  This slot may be left to *NULL*, in this case
   :c:func:`!PySequence_Contains` simply traverses the sequence until it
   finds a match.
.. c:member:: binaryfunc PySequenceMethods.sq_inplace_concat

   This function is used by :c:func:`PySequence_InPlaceConcat` and has the same
   signature.  It should modify its first operand, and return it.  This slot
   may be left to *NULL*, in this case :c:func:`!PySequence_InPlaceConcat`
   will fall back to :c:func:`PySequence_Concat`.  It is also used by the
   augmented assignment ``+=``, after trying numeric in-place addition
   via the :c:member:`~PyNumberMethods.nb_inplace_add` slot.
.. c:member:: ssizeargfunc PySequenceMethods.sq_inplace_repeat

   This function is used by :c:func:`PySequence_InPlaceRepeat` and has the same
   signature.  It should modify its first operand, and return it.  This slot
   may be left to *NULL*, in this case :c:func:`!PySequence_InPlaceRepeat`
   will fall back to :c:func:`PySequence_Repeat`.  It is also used by the
   augmented assignment ``*=``, after trying numeric in-place multiplication
   via the :c:member:`~PyNumberMethods.nb_inplace_multiply` slot.

Buffer Object Structures

.. sectionauthor:: Greg J. Stein <greg@lyra.org>
.. sectionauthor:: Benjamin Peterson
.. sectionauthor:: Stefan Krah
.. c:type:: PyBufferProcs

   This structure holds pointers to the functions required by the
   :ref:`Buffer protocol <bufferobjects>`. The protocol defines how
   an exporter object can expose its internal data to consumer objects.
.. c:member:: getbufferproc PyBufferProcs.bf_getbuffer

   The signature of this function is::

       int (PyObject *exporter, Py_buffer *view, int flags);

   Handle a request to *exporter* to fill in *view* as specified by *flags*.
   Except for point (3), an implementation of this function MUST take these
   steps:

   (1) Check if the request can be met. If not, raise :c:data:`PyExc_BufferError`,
       set :c:data:`view->obj` to *NULL* and return ``-1``.

   (2) Fill in the requested fields.

   (3) Increment an internal counter for the number of exports.

   (4) Set :c:data:`view->obj` to *exporter* and increment :c:data:`view->obj`.

   (5) Return ``0``.

   If *exporter* is part of a chain or tree of buffer providers, two main
   schemes can be used:

   * Re-export: Each member of the tree acts as the exporting object and
     sets :c:data:`view->obj` to a new reference to itself.

   * Redirect: The buffer request is redirected to the root object of the
     tree. Here, :c:data:`view->obj` will be a new reference to the root
     object.

   The individual fields of *view* are described in section
   :ref:`Buffer structure <buffer-structure>`, the rules how an exporter
   must react to specific requests are in section
   :ref:`Buffer request types <buffer-request-types>`.

   All memory pointed to in the :c:type:`Py_buffer` structure belongs to
   the exporter and must remain valid until there are no consumers left.
   :c:member:`~Py_buffer.format`, :c:member:`~Py_buffer.shape`,
   :c:member:`~Py_buffer.strides`, :c:member:`~Py_buffer.suboffsets`
   and :c:member:`~Py_buffer.internal`
   are read-only for the consumer.

   :c:func:`PyBuffer_FillInfo` provides an easy way of exposing a simple
   bytes buffer while dealing correctly with all request types.

   :c:func:`PyObject_GetBuffer` is the interface for the consumer that
   wraps this function.
.. c:member:: releasebufferproc PyBufferProcs.bf_releasebuffer

   The signature of this function is::

       void (PyObject *exporter, Py_buffer *view);

   Handle a request to release the resources of the buffer. If no resources
   need to be released, :c:member:`PyBufferProcs.bf_releasebuffer` may be
   *NULL*. Otherwise, a standard implementation of this function will take
   these optional steps:

   (1) Decrement an internal counter for the number of exports.

   (2) If the counter is ``0``, free all memory associated with *view*.

   The exporter MUST use the :c:member:`~Py_buffer.internal` field to keep
   track of buffer-specific resources. This field is guaranteed to remain
   constant, while a consumer MAY pass a copy of the original buffer as the
   *view* argument.


   This function MUST NOT decrement :c:data:`view->obj`, since that is
   done automatically in :c:func:`PyBuffer_Release` (this scheme is
   useful for breaking reference cycles).


   :c:func:`PyBuffer_Release` is the interface for the consumer that
   wraps this function.

Async Object Structures

.. sectionauthor:: Yury Selivanov <yselivanov@sprymix.com>
.. versionadded:: 3.5
.. c:type:: PyAsyncMethods

   This structure holds pointers to the functions required to implement
   :term:`awaitable` and :term:`asynchronous iterator` objects.

   Here is the structure definition::

        typedef struct {
            unaryfunc am_await;
            unaryfunc am_aiter;
            unaryfunc am_anext;
        } PyAsyncMethods;
.. c:member:: unaryfunc PyAsyncMethods.am_await

   The signature of this function is::

      PyObject *am_await(PyObject *self);

   The returned object must be an iterator, i.e. :c:func:`PyIter_Check` must
   return ``1`` for it.

   This slot may be set to *NULL* if an object is not an :term:`awaitable`.
.. c:member:: unaryfunc PyAsyncMethods.am_aiter

   The signature of this function is::

      PyObject *am_aiter(PyObject *self);

   Must return an :term:`awaitable` object.  See :meth:`__anext__` for details.

   This slot may be set to *NULL* if an object does not implement
   asynchronous iteration protocol.
.. c:member:: unaryfunc PyAsyncMethods.am_anext

   The signature of this function is::

      PyObject *am_anext(PyObject *self);

   Must return an :term:`awaitable` object.  See :meth:`__anext__` for details.
   This slot may be set to *NULL*.

Slot Type typedefs

.. c:type:: PyObject *(*allocfunc)(PyTypeObject *cls, Py_ssize_t nitems)

   The purpose of this function is to separate memory allocation from memory
   initialization.  It should return a pointer to a block of memory of adequate
   length for the instance, suitably aligned, and initialized to zeros, but with
   :attr:`ob_refcnt` set to ``1`` and :attr:`ob_type` set to the type argument.  If
   the type's :c:member:`~PyTypeObject.tp_itemsize` is non-zero, the object's :attr:`ob_size` field
   should be initialized to *nitems* and the length of the allocated memory block
   should be ``tp_basicsize + nitems*tp_itemsize``, rounded up to a multiple of
   ``sizeof(void*)``; otherwise, *nitems* is not used and the length of the block
   should be :c:member:`~PyTypeObject.tp_basicsize`.

   This function should not do any other instance initialization, not even to
   allocate additional memory; that should be done by :c:member:`~PyTypeObject.tp_new`.
.. c:type:: void (*destructor)(PyObject *)
.. c:type:: PyObject *(*vectorcallfunc)(PyObject *callable, PyObject *const *args, size_t nargsf, PyObject *kwnames)

   See :c:member:`~PyTypeObject.tp_vectorcall_offset`.

   Arguments to ``vectorcallfunc`` are the same as for :c:func:`_PyObject_Vectorcall`.

   .. versionadded:: 3.8
.. c:type:: void (*freefunc)(void *)

   See :c:member:`~PyTypeObject.tp_free`.
.. c:type:: PyObject *(*newfunc)(PyObject *, PyObject *, PyObject *)

   See :c:member:`~PyTypeObject.tp_new`.
.. c:type:: int (*initproc)(PyObject *, PyObject *, PyObject *)

   See :c:member:`~PyTypeObject.tp_init`.
.. c:type:: PyObject *(*reprfunc)(PyObject *)

   See :c:member:`~PyTypeObject.tp_repr`.
.. c:type:: PyObject *(*getattrfunc)(PyObject *self, char *attr)

   Return the value of the named attribute for the object.
.. c:type:: int (*setattrfunc)(PyObject *self, char *attr, PyObject *value)

   Set the value of the named attribute for the object.
   The value argument is set to *NULL* to delete the attribute.
.. c:type:: PyObject *(*getattrofunc)(PyObject *self, PyObject *attr)

   Return the value of the named attribute for the object.

   See :c:member:`~PyTypeObject.tp_getattro`.
.. c:type:: int (*setattrofunc)(PyObject *self, PyObject *attr, PyObject *value)

   Set the value of the named attribute for the object.
   The value argument is set to *NULL* to delete the attribute.

   See :c:member:`~PyTypeObject.tp_setattro`.
.. c:type:: PyObject *(*descrgetfunc)(PyObject *, PyObject *, PyObject *)

   See :c:member:`~PyTypeObject.tp_descrget`.
.. c:type:: int (*descrsetfunc)(PyObject *, PyObject *, PyObject *)

   See :c:member:`~PyTypeObject.tp_descrset`.
.. c:type:: Py_hash_t (*hashfunc)(PyObject *)

   See :c:member:`~PyTypeObject.tp_hash`.
.. c:type:: PyObject *(*richcmpfunc)(PyObject *, PyObject *, int)

   See :c:member:`~PyTypeObject.tp_richcompare`.
.. c:type:: PyObject *(*getiterfunc)(PyObject *)

   See :c:member:`~PyTypeObject.tp_iter`.
.. c:type:: PyObject *(*iternextfunc)(PyObject *)

   See :c:member:`~PyTypeObject.tp_iternext`.
.. c:type:: Py_ssize_t (*lenfunc)(PyObject *)
.. c:type:: int (*getbufferproc)(PyObject *, Py_buffer *, int)
.. c:type:: void (*releasebufferproc)(PyObject *, Py_buffer *)
.. c:type:: PyObject *(*unaryfunc)(PyObject *)
.. c:type:: PyObject *(*binaryfunc)(PyObject *, PyObject *)
.. c:type:: PyObject *(*ternaryfunc)(PyObject *, PyObject *, PyObject *)
.. c:type:: PyObject *(*ssizeargfunc)(PyObject *, Py_ssize_t)
.. c:type:: int (*ssizeobjargproc)(PyObject *, Py_ssize_t)
.. c:type:: int (*objobjproc)(PyObject *, PyObject *)
.. c:type:: int (*objobjargproc)(PyObject *, PyObject *, PyObject *)

Examples

The following are simple examples of Python type definitions. They include common usage you may encounter. Some demonstrate tricky corner cases. For more examples, practical info, and a tutorial, see :ref:`defining-new-types` and :ref:`new-types-topics`.

A basic static type:

typedef struct {
    PyObject_HEAD
    const char *data;
} MyObject;

static PyTypeObject MyObject_Type = {
    PyVarObject_HEAD_INIT(NULL, 0)
    .tp_name = "mymod.MyObject",
    .tp_basicsize = sizeof(MyObject),
    .tp_doc = "My objects",
    .tp_new = myobj_new,
    .tp_dealloc = (destructor)myobj_dealloc,
    .tp_repr = (reprfunc)myobj_repr,
};

You may also find older code (especially in the CPython code base) with a more verbose initializer:

static PyTypeObject MyObject_Type = {
    PyVarObject_HEAD_INIT(NULL, 0)
    "mymod.MyObject",               /* tp_name */
    sizeof(MyObject),               /* tp_basicsize */
    0,                              /* tp_itemsize */
    (destructor)myobj_dealloc,      /* tp_dealloc */
    0,                              /* tp_vectorcall_offset */
    0,                              /* tp_getattr */
    0,                              /* tp_setattr */
    0,                              /* tp_as_async */
    (reprfunc)myobj_repr,           /* tp_repr */
    0,                              /* tp_as_number */
    0,                              /* tp_as_sequence */
    0,                              /* tp_as_mapping */
    0,                              /* tp_hash */
    0,                              /* tp_call */
    0,                              /* tp_str */
    0,                              /* tp_getattro */
    0,                              /* tp_setattro */
    0,                              /* tp_as_buffer */
    0,                              /* tp_flags */
    "My objects",                   /* tp_doc */
    0,                              /* tp_traverse */
    0,                              /* tp_clear */
    0,                              /* tp_richcompare */
    0,                              /* tp_weaklistoffset */
    0,                              /* tp_iter */
    0,                              /* tp_iternext */
    0,                              /* tp_methods */
    0,                              /* tp_members */
    0,                              /* tp_getset */
    0,                              /* tp_base */
    0,                              /* tp_dict */
    0,                              /* tp_descr_get */
    0,                              /* tp_descr_set */
    0,                              /* tp_dictoffset */
    0,                              /* tp_init */
    0,                              /* tp_alloc */
    myobj_new,                      /* tp_new */
};

A type that supports weakrefs, instance dicts, and hashing:

typedef struct {
    PyObject_HEAD
    const char *data;
    PyObject *inst_dict;
    PyObject *weakreflist;
} MyObject;

static PyTypeObject MyObject_Type = {
    PyVarObject_HEAD_INIT(NULL, 0)
    .tp_name = "mymod.MyObject",
    .tp_basicsize = sizeof(MyObject),
    .tp_doc = "My objects",
    .tp_weaklistoffset = offsetof(MyObject, weakreflist),
    .tp_dictoffset = offsetof(MyObject, inst_dict),
    .tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,
    .tp_new = myobj_new,
    .tp_traverse = (traverseproc)myobj_traverse,
    .tp_clear = (inquiry)myobj_clear,
    .tp_alloc = PyType_GenericNew,
    .tp_dealloc = (destructor)myobj_dealloc,
    .tp_repr = (reprfunc)myobj_repr,
    .tp_hash = (hashfunc)myobj_hash,
    .tp_richcompare = PyBaseObject_Type.tp_richcompare,
};

A str subclass that cannot be subclassed and cannot be called to create instances (e.g. uses a separate factory func):

typedef struct {
    PyUnicodeObject raw;
    char *extra;
} MyStr;

static PyTypeObject MyStr_Type = {
    PyVarObject_HEAD_INIT(NULL, 0)
    .tp_name = "mymod.MyStr",
    .tp_basicsize = sizeof(MyStr),
    .tp_base = NULL,  // set to &PyUnicode_Type in module init
    .tp_doc = "my custom str",
    .tp_flags = Py_TPFLAGS_DEFAULT,
    .tp_new = NULL,
    .tp_repr = (reprfunc)myobj_repr,
};

The simplest static type (with fixed-length instances):

typedef struct {
    PyObject_HEAD
} MyObject;

static PyTypeObject MyObject_Type = {
    PyVarObject_HEAD_INIT(NULL, 0)
    .tp_name = "mymod.MyObject",
};

The simplest static type (with variable-length instances):

typedef struct {
    PyObject_VAR_HEAD
    const char *data[1];
} MyObject;

static PyTypeObject MyObject_Type = {
    PyVarObject_HEAD_INIT(NULL, 0)
    .tp_name = "mymod.MyObject",
    .tp_basicsize = sizeof(MyObject) - sizeof(char *),
    .tp_itemsize = sizeof(char *),
};
You can’t perform that action at this time.