Permalink
5533 lines (4983 sloc) 171 KB
/* Execute compiled code */
/* XXX TO DO:
XXX speed up searching for keywords by using a dictionary
XXX document it!
*/
/* enable more aggressive intra-module optimizations, where available */
#define PY_LOCAL_AGGRESSIVE
#include "Python.h"
#include "code.h"
#include "dictobject.h"
#include "frameobject.h"
#include "opcode.h"
#include "pydtrace.h"
#include "setobject.h"
#include "structmember.h"
#include <ctype.h>
/* Turn this on if your compiler chokes on the big switch: */
/* #define CASE_TOO_BIG 1 */
#ifdef Py_DEBUG
/* For debugging the interpreter: */
#define LLTRACE 1 /* Low-level trace feature */
#define CHECKEXC 1 /* Double-check exception checking */
#endif
/* Private API for the LOAD_METHOD opcode. */
extern int _PyObject_GetMethod(PyObject *, PyObject *, PyObject **);
typedef PyObject *(*callproc)(PyObject *, PyObject *, PyObject *);
/* Forward declarations */
Py_LOCAL_INLINE(PyObject *) call_function(PyObject ***, Py_ssize_t, PyObject *);
static PyObject * fast_function(PyObject *, PyObject **, Py_ssize_t, PyObject *);
static PyObject * do_call_core(PyObject *, PyObject *, PyObject *);
#ifdef LLTRACE
static int lltrace;
static int prtrace(PyObject *, const char *);
#endif
static int call_trace(Py_tracefunc, PyObject *,
PyThreadState *, PyFrameObject *,
int, PyObject *);
static int call_trace_protected(Py_tracefunc, PyObject *,
PyThreadState *, PyFrameObject *,
int, PyObject *);
static void call_exc_trace(Py_tracefunc, PyObject *,
PyThreadState *, PyFrameObject *);
static int maybe_call_line_trace(Py_tracefunc, PyObject *,
PyThreadState *, PyFrameObject *, int *, int *, int *);
static void maybe_dtrace_line(PyFrameObject *, int *, int *, int *);
static void dtrace_function_entry(PyFrameObject *);
static void dtrace_function_return(PyFrameObject *);
static PyObject * cmp_outcome(int, PyObject *, PyObject *);
static PyObject * import_name(PyFrameObject *, PyObject *, PyObject *, PyObject *);
static PyObject * import_from(PyObject *, PyObject *);
static int import_all_from(PyObject *, PyObject *);
static void format_exc_check_arg(PyObject *, const char *, PyObject *);
static void format_exc_unbound(PyCodeObject *co, int oparg);
static PyObject * unicode_concatenate(PyObject *, PyObject *,
PyFrameObject *, const _Py_CODEUNIT *);
static PyObject * special_lookup(PyObject *, _Py_Identifier *);
#define NAME_ERROR_MSG \
"name '%.200s' is not defined"
#define UNBOUNDLOCAL_ERROR_MSG \
"local variable '%.200s' referenced before assignment"
#define UNBOUNDFREE_ERROR_MSG \
"free variable '%.200s' referenced before assignment" \
" in enclosing scope"
/* Dynamic execution profile */
#ifdef DYNAMIC_EXECUTION_PROFILE
#ifdef DXPAIRS
static long dxpairs[257][256];
#define dxp dxpairs[256]
#else
static long dxp[256];
#endif
#endif
#ifdef WITH_THREAD
#define GIL_REQUEST _Py_atomic_load_relaxed(&gil_drop_request)
#else
#define GIL_REQUEST 0
#endif
/* This can set eval_breaker to 0 even though gil_drop_request became
1. We believe this is all right because the eval loop will release
the GIL eventually anyway. */
#define COMPUTE_EVAL_BREAKER() \
_Py_atomic_store_relaxed( \
&eval_breaker, \
GIL_REQUEST | \
_Py_atomic_load_relaxed(&pendingcalls_to_do) | \
pending_async_exc)
#ifdef WITH_THREAD
#define SET_GIL_DROP_REQUEST() \
do { \
_Py_atomic_store_relaxed(&gil_drop_request, 1); \
_Py_atomic_store_relaxed(&eval_breaker, 1); \
} while (0)
#define RESET_GIL_DROP_REQUEST() \
do { \
_Py_atomic_store_relaxed(&gil_drop_request, 0); \
COMPUTE_EVAL_BREAKER(); \
} while (0)
#endif
/* Pending calls are only modified under pending_lock */
#define SIGNAL_PENDING_CALLS() \
do { \
_Py_atomic_store_relaxed(&pendingcalls_to_do, 1); \
_Py_atomic_store_relaxed(&eval_breaker, 1); \
} while (0)
#define UNSIGNAL_PENDING_CALLS() \
do { \
_Py_atomic_store_relaxed(&pendingcalls_to_do, 0); \
COMPUTE_EVAL_BREAKER(); \
} while (0)
#define SIGNAL_ASYNC_EXC() \
do { \
pending_async_exc = 1; \
_Py_atomic_store_relaxed(&eval_breaker, 1); \
} while (0)
#define UNSIGNAL_ASYNC_EXC() \
do { pending_async_exc = 0; COMPUTE_EVAL_BREAKER(); } while (0)
#ifdef WITH_THREAD
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#include "pythread.h"
static PyThread_type_lock pending_lock = 0; /* for pending calls */
static long main_thread = 0;
/* This single variable consolidates all requests to break out of the fast path
in the eval loop. */
static _Py_atomic_int eval_breaker = {0};
/* Request for dropping the GIL */
static _Py_atomic_int gil_drop_request = {0};
/* Request for running pending calls. */
static _Py_atomic_int pendingcalls_to_do = {0};
/* Request for looking at the `async_exc` field of the current thread state.
Guarded by the GIL. */
static int pending_async_exc = 0;
#include "ceval_gil.h"
int
PyEval_ThreadsInitialized(void)
{
return gil_created();
}
void
PyEval_InitThreads(void)
{
if (gil_created())
return;
create_gil();
take_gil(PyThreadState_GET());
main_thread = PyThread_get_thread_ident();
if (!pending_lock)
pending_lock = PyThread_allocate_lock();
}
void
_PyEval_FiniThreads(void)
{
if (!gil_created())
return;
destroy_gil();
assert(!gil_created());
}
void
PyEval_AcquireLock(void)
{
PyThreadState *tstate = PyThreadState_GET();
if (tstate == NULL)
Py_FatalError("PyEval_AcquireLock: current thread state is NULL");
take_gil(tstate);
}
void
PyEval_ReleaseLock(void)
{
/* This function must succeed when the current thread state is NULL.
We therefore avoid PyThreadState_GET() which dumps a fatal error
in debug mode.
*/
drop_gil((PyThreadState*)_Py_atomic_load_relaxed(
&_PyThreadState_Current));
}
void
PyEval_AcquireThread(PyThreadState *tstate)
{
if (tstate == NULL)
Py_FatalError("PyEval_AcquireThread: NULL new thread state");
/* Check someone has called PyEval_InitThreads() to create the lock */
assert(gil_created());
take_gil(tstate);
if (PyThreadState_Swap(tstate) != NULL)
Py_FatalError(
"PyEval_AcquireThread: non-NULL old thread state");
}
void
PyEval_ReleaseThread(PyThreadState *tstate)
{
if (tstate == NULL)
Py_FatalError("PyEval_ReleaseThread: NULL thread state");
if (PyThreadState_Swap(NULL) != tstate)
Py_FatalError("PyEval_ReleaseThread: wrong thread state");
drop_gil(tstate);
}
/* This function is called from PyOS_AfterFork to destroy all threads which are
* not running in the child process, and clear internal locks which might be
* held by those threads. (This could also be done using pthread_atfork
* mechanism, at least for the pthreads implementation.) */
void
PyEval_ReInitThreads(void)
{
_Py_IDENTIFIER(_after_fork);
PyObject *threading, *result;
PyThreadState *current_tstate = PyThreadState_GET();
if (!gil_created())
return;
recreate_gil();
pending_lock = PyThread_allocate_lock();
take_gil(current_tstate);
main_thread = PyThread_get_thread_ident();
/* Update the threading module with the new state.
*/
threading = PyMapping_GetItemString(current_tstate->interp->modules,
"threading");
if (threading == NULL) {
/* threading not imported */
PyErr_Clear();
return;
}
result = _PyObject_CallMethodId(threading, &PyId__after_fork, NULL);
if (result == NULL)
PyErr_WriteUnraisable(threading);
else
Py_DECREF(result);
Py_DECREF(threading);
/* Destroy all threads except the current one */
_PyThreadState_DeleteExcept(current_tstate);
}
#else
static _Py_atomic_int eval_breaker = {0};
static int pending_async_exc = 0;
#endif /* WITH_THREAD */
/* This function is used to signal that async exceptions are waiting to be
raised, therefore it is also useful in non-threaded builds. */
void
_PyEval_SignalAsyncExc(void)
{
SIGNAL_ASYNC_EXC();
}
/* Functions save_thread and restore_thread are always defined so
dynamically loaded modules needn't be compiled separately for use
with and without threads: */
PyThreadState *
PyEval_SaveThread(void)
{
PyThreadState *tstate = PyThreadState_Swap(NULL);
if (tstate == NULL)
Py_FatalError("PyEval_SaveThread: NULL tstate");
#ifdef WITH_THREAD
if (gil_created())
drop_gil(tstate);
#endif
return tstate;
}
void
PyEval_RestoreThread(PyThreadState *tstate)
{
if (tstate == NULL)
Py_FatalError("PyEval_RestoreThread: NULL tstate");
#ifdef WITH_THREAD
if (gil_created()) {
int err = errno;
take_gil(tstate);
/* _Py_Finalizing is protected by the GIL */
if (_Py_Finalizing && tstate != _Py_Finalizing) {
drop_gil(tstate);
PyThread_exit_thread();
assert(0); /* unreachable */
}
errno = err;
}
#endif
PyThreadState_Swap(tstate);
}
/* Mechanism whereby asynchronously executing callbacks (e.g. UNIX
signal handlers or Mac I/O completion routines) can schedule calls
to a function to be called synchronously.
The synchronous function is called with one void* argument.
It should return 0 for success or -1 for failure -- failure should
be accompanied by an exception.
If registry succeeds, the registry function returns 0; if it fails
(e.g. due to too many pending calls) it returns -1 (without setting
an exception condition).
Note that because registry may occur from within signal handlers,
or other asynchronous events, calling malloc() is unsafe!
#ifdef WITH_THREAD
Any thread can schedule pending calls, but only the main thread
will execute them.
There is no facility to schedule calls to a particular thread, but
that should be easy to change, should that ever be required. In
that case, the static variables here should go into the python
threadstate.
#endif
*/
#ifdef WITH_THREAD
/* The WITH_THREAD implementation is thread-safe. It allows
scheduling to be made from any thread, and even from an executing
callback.
*/
#define NPENDINGCALLS 32
static struct {
int (*func)(void *);
void *arg;
} pendingcalls[NPENDINGCALLS];
static int pendingfirst = 0;
static int pendinglast = 0;
int
Py_AddPendingCall(int (*func)(void *), void *arg)
{
int i, j, result=0;
PyThread_type_lock lock = pending_lock;
/* try a few times for the lock. Since this mechanism is used
* for signal handling (on the main thread), there is a (slim)
* chance that a signal is delivered on the same thread while we
* hold the lock during the Py_MakePendingCalls() function.
* This avoids a deadlock in that case.
* Note that signals can be delivered on any thread. In particular,
* on Windows, a SIGINT is delivered on a system-created worker
* thread.
* We also check for lock being NULL, in the unlikely case that
* this function is called before any bytecode evaluation takes place.
*/
if (lock != NULL) {
for (i = 0; i<100; i++) {
if (PyThread_acquire_lock(lock, NOWAIT_LOCK))
break;
}
if (i == 100)
return -1;
}
i = pendinglast;
j = (i + 1) % NPENDINGCALLS;
if (j == pendingfirst) {
result = -1; /* Queue full */
} else {
pendingcalls[i].func = func;
pendingcalls[i].arg = arg;
pendinglast = j;
}
/* signal main loop */
SIGNAL_PENDING_CALLS();
if (lock != NULL)
PyThread_release_lock(lock);
return result;
}
int
Py_MakePendingCalls(void)
{
static int busy = 0;
int i;
int r = 0;
if (!pending_lock) {
/* initial allocation of the lock */
pending_lock = PyThread_allocate_lock();
if (pending_lock == NULL)
return -1;
}
/* only service pending calls on main thread */
if (main_thread && PyThread_get_thread_ident() != main_thread)
return 0;
/* don't perform recursive pending calls */
if (busy)
return 0;
busy = 1;
/* perform a bounded number of calls, in case of recursion */
for (i=0; i<NPENDINGCALLS; i++) {
int j;
int (*func)(void *);
void *arg = NULL;
/* pop one item off the queue while holding the lock */
PyThread_acquire_lock(pending_lock, WAIT_LOCK);
j = pendingfirst;
if (j == pendinglast) {
func = NULL; /* Queue empty */
} else {
func = pendingcalls[j].func;
arg = pendingcalls[j].arg;
pendingfirst = (j + 1) % NPENDINGCALLS;
}
if (pendingfirst != pendinglast)
SIGNAL_PENDING_CALLS();
else
UNSIGNAL_PENDING_CALLS();
PyThread_release_lock(pending_lock);
/* having released the lock, perform the callback */
if (func == NULL)
break;
r = func(arg);
if (r)
break;
}
busy = 0;
return r;
}
#else /* if ! defined WITH_THREAD */
/*
WARNING! ASYNCHRONOUSLY EXECUTING CODE!
This code is used for signal handling in python that isn't built
with WITH_THREAD.
Don't use this implementation when Py_AddPendingCalls() can happen
on a different thread!
There are two possible race conditions:
(1) nested asynchronous calls to Py_AddPendingCall()
(2) AddPendingCall() calls made while pending calls are being processed.
(1) is very unlikely because typically signal delivery
is blocked during signal handling. So it should be impossible.
(2) is a real possibility.
The current code is safe against (2), but not against (1).
The safety against (2) is derived from the fact that only one
thread is present, interrupted by signals, and that the critical
section is protected with the "busy" variable. On Windows, which
delivers SIGINT on a system thread, this does not hold and therefore
Windows really shouldn't use this version.
The two threads could theoretically wiggle around the "busy" variable.
*/
#define NPENDINGCALLS 32
static struct {
int (*func)(void *);
void *arg;
} pendingcalls[NPENDINGCALLS];
static volatile int pendingfirst = 0;
static volatile int pendinglast = 0;
static _Py_atomic_int pendingcalls_to_do = {0};
int
Py_AddPendingCall(int (*func)(void *), void *arg)
{
static volatile int busy = 0;
int i, j;
/* XXX Begin critical section */
if (busy)
return -1;
busy = 1;
i = pendinglast;
j = (i + 1) % NPENDINGCALLS;
if (j == pendingfirst) {
busy = 0;
return -1; /* Queue full */
}
pendingcalls[i].func = func;
pendingcalls[i].arg = arg;
pendinglast = j;
SIGNAL_PENDING_CALLS();
busy = 0;
/* XXX End critical section */
return 0;
}
int
Py_MakePendingCalls(void)
{
static int busy = 0;
if (busy)
return 0;
busy = 1;
UNSIGNAL_PENDING_CALLS();
for (;;) {
int i;
int (*func)(void *);
void *arg;
i = pendingfirst;
if (i == pendinglast)
break; /* Queue empty */
func = pendingcalls[i].func;
arg = pendingcalls[i].arg;
pendingfirst = (i + 1) % NPENDINGCALLS;
if (func(arg) < 0) {
busy = 0;
SIGNAL_PENDING_CALLS(); /* We're not done yet */
return -1;
}
}
busy = 0;
return 0;
}
#endif /* WITH_THREAD */
/* The interpreter's recursion limit */
#ifndef Py_DEFAULT_RECURSION_LIMIT
#define Py_DEFAULT_RECURSION_LIMIT 1000
#endif
static int recursion_limit = Py_DEFAULT_RECURSION_LIMIT;
int _Py_CheckRecursionLimit = Py_DEFAULT_RECURSION_LIMIT;
int
Py_GetRecursionLimit(void)
{
return recursion_limit;
}
void
Py_SetRecursionLimit(int new_limit)
{
recursion_limit = new_limit;
_Py_CheckRecursionLimit = recursion_limit;
}
/* the macro Py_EnterRecursiveCall() only calls _Py_CheckRecursiveCall()
if the recursion_depth reaches _Py_CheckRecursionLimit.
If USE_STACKCHECK, the macro decrements _Py_CheckRecursionLimit
to guarantee that _Py_CheckRecursiveCall() is regularly called.
Without USE_STACKCHECK, there is no need for this. */
int
_Py_CheckRecursiveCall(const char *where)
{
PyThreadState *tstate = PyThreadState_GET();
#ifdef USE_STACKCHECK
if (PyOS_CheckStack()) {
--tstate->recursion_depth;
PyErr_SetString(PyExc_MemoryError, "Stack overflow");
return -1;
}
#endif
_Py_CheckRecursionLimit = recursion_limit;
if (tstate->recursion_critical)
/* Somebody asked that we don't check for recursion. */
return 0;
if (tstate->overflowed) {
if (tstate->recursion_depth > recursion_limit + 50) {
/* Overflowing while handling an overflow. Give up. */
Py_FatalError("Cannot recover from stack overflow.");
}
return 0;
}
if (tstate->recursion_depth > recursion_limit) {
--tstate->recursion_depth;
tstate->overflowed = 1;
PyErr_Format(PyExc_RecursionError,
"maximum recursion depth exceeded%s",
where);
return -1;
}
return 0;
}
/* Status code for main loop (reason for stack unwind) */
enum why_code {
WHY_NOT = 0x0001, /* No error */
WHY_EXCEPTION = 0x0002, /* Exception occurred */
WHY_RETURN = 0x0008, /* 'return' statement */
WHY_BREAK = 0x0010, /* 'break' statement */
WHY_CONTINUE = 0x0020, /* 'continue' statement */
WHY_YIELD = 0x0040, /* 'yield' operator */
WHY_SILENCED = 0x0080 /* Exception silenced by 'with' */
};
static void save_exc_state(PyThreadState *, PyFrameObject *);
static void swap_exc_state(PyThreadState *, PyFrameObject *);
static void restore_and_clear_exc_state(PyThreadState *, PyFrameObject *);
static int do_raise(PyObject *, PyObject *);
static int unpack_iterable(PyObject *, int, int, PyObject **);
/* Records whether tracing is on for any thread. Counts the number of
threads for which tstate->c_tracefunc is non-NULL, so if the value
is 0, we know we don't have to check this thread's c_tracefunc.
This speeds up the if statement in PyEval_EvalFrameEx() after
fast_next_opcode*/
static int _Py_TracingPossible = 0;
PyObject *
PyEval_EvalCode(PyObject *co, PyObject *globals, PyObject *locals)
{
return PyEval_EvalCodeEx(co,
globals, locals,
(PyObject **)NULL, 0,
(PyObject **)NULL, 0,
(PyObject **)NULL, 0,
NULL, NULL);
}
/* Interpreter main loop */
PyObject *
PyEval_EvalFrame(PyFrameObject *f) {
/* This is for backward compatibility with extension modules that
used this API; core interpreter code should call
PyEval_EvalFrameEx() */
return PyEval_EvalFrameEx(f, 0);
}
PyObject *
PyEval_EvalFrameEx(PyFrameObject *f, int throwflag)
{
PyThreadState *tstate = PyThreadState_GET();
return tstate->interp->eval_frame(f, throwflag);
}
PyObject* _Py_HOT_FUNCTION
_PyEval_EvalFrameDefault(PyFrameObject *f, int throwflag)
{
#ifdef DXPAIRS
int lastopcode = 0;
#endif
PyObject **stack_pointer; /* Next free slot in value stack */
const _Py_CODEUNIT *next_instr;
int opcode; /* Current opcode */
int oparg; /* Current opcode argument, if any */
enum why_code why; /* Reason for block stack unwind */
PyObject **fastlocals, **freevars;
PyObject *retval = NULL; /* Return value */
PyThreadState *tstate = PyThreadState_GET();
PyCodeObject *co;
/* when tracing we set things up so that
not (instr_lb <= current_bytecode_offset < instr_ub)
is true when the line being executed has changed. The
initial values are such as to make this false the first
time it is tested. */
int instr_ub = -1, instr_lb = 0, instr_prev = -1;
const _Py_CODEUNIT *first_instr;
PyObject *names;
PyObject *consts;
#ifdef LLTRACE
_Py_IDENTIFIER(__ltrace__);
#endif
/* Computed GOTOs, or
the-optimization-commonly-but-improperly-known-as-"threaded code"
using gcc's labels-as-values extension
(http://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html).
The traditional bytecode evaluation loop uses a "switch" statement, which
decent compilers will optimize as a single indirect branch instruction
combined with a lookup table of jump addresses. However, since the
indirect jump instruction is shared by all opcodes, the CPU will have a
hard time making the right prediction for where to jump next (actually,
it will be always wrong except in the uncommon case of a sequence of
several identical opcodes).
"Threaded code" in contrast, uses an explicit jump table and an explicit
indirect jump instruction at the end of each opcode. Since the jump
instruction is at a different address for each opcode, the CPU will make a
separate prediction for each of these instructions, which is equivalent to
predicting the second opcode of each opcode pair. These predictions have
a much better chance to turn out valid, especially in small bytecode loops.
A mispredicted branch on a modern CPU flushes the whole pipeline and
can cost several CPU cycles (depending on the pipeline depth),
and potentially many more instructions (depending on the pipeline width).
A correctly predicted branch, however, is nearly free.
At the time of this writing, the "threaded code" version is up to 15-20%
faster than the normal "switch" version, depending on the compiler and the
CPU architecture.
We disable the optimization if DYNAMIC_EXECUTION_PROFILE is defined,
because it would render the measurements invalid.
NOTE: care must be taken that the compiler doesn't try to "optimize" the
indirect jumps by sharing them between all opcodes. Such optimizations
can be disabled on gcc by using the -fno-gcse flag (or possibly
-fno-crossjumping).
*/
#ifdef DYNAMIC_EXECUTION_PROFILE
#undef USE_COMPUTED_GOTOS
#define USE_COMPUTED_GOTOS 0
#endif
#ifdef HAVE_COMPUTED_GOTOS
#ifndef USE_COMPUTED_GOTOS
#define USE_COMPUTED_GOTOS 1
#endif
#else
#if defined(USE_COMPUTED_GOTOS) && USE_COMPUTED_GOTOS
#error "Computed gotos are not supported on this compiler."
#endif
#undef USE_COMPUTED_GOTOS
#define USE_COMPUTED_GOTOS 0
#endif
#if USE_COMPUTED_GOTOS
/* Import the static jump table */
#include "opcode_targets.h"
#define TARGET(op) \
TARGET_##op: \
case op:
#define DISPATCH() \
{ \
if (!_Py_atomic_load_relaxed(&eval_breaker)) { \
FAST_DISPATCH(); \
} \
continue; \
}
#ifdef LLTRACE
#define FAST_DISPATCH() \
{ \
if (!lltrace && !_Py_TracingPossible && !PyDTrace_LINE_ENABLED()) { \
f->f_lasti = INSTR_OFFSET(); \
NEXTOPARG(); \
goto *opcode_targets[opcode]; \
} \
goto fast_next_opcode; \
}
#else
#define FAST_DISPATCH() \
{ \
if (!_Py_TracingPossible && !PyDTrace_LINE_ENABLED()) { \
f->f_lasti = INSTR_OFFSET(); \
NEXTOPARG(); \
goto *opcode_targets[opcode]; \
} \
goto fast_next_opcode; \
}
#endif
#else
#define TARGET(op) \
case op:
#define DISPATCH() continue
#define FAST_DISPATCH() goto fast_next_opcode
#endif
/* Tuple access macros */
#ifndef Py_DEBUG
#define GETITEM(v, i) PyTuple_GET_ITEM((PyTupleObject *)(v), (i))
#else
#define GETITEM(v, i) PyTuple_GetItem((v), (i))
#endif
/* Code access macros */
/* The integer overflow is checked by an assertion below. */
#define INSTR_OFFSET() (sizeof(_Py_CODEUNIT) * (int)(next_instr - first_instr))
#define NEXTOPARG() do { \
_Py_CODEUNIT word = *next_instr; \
opcode = _Py_OPCODE(word); \
oparg = _Py_OPARG(word); \
next_instr++; \
} while (0)
#define JUMPTO(x) (next_instr = first_instr + (x) / sizeof(_Py_CODEUNIT))
#define JUMPBY(x) (next_instr += (x) / sizeof(_Py_CODEUNIT))
/* OpCode prediction macros
Some opcodes tend to come in pairs thus making it possible to
predict the second code when the first is run. For example,
COMPARE_OP is often followed by POP_JUMP_IF_FALSE or POP_JUMP_IF_TRUE.
Verifying the prediction costs a single high-speed test of a register
variable against a constant. If the pairing was good, then the
processor's own internal branch predication has a high likelihood of
success, resulting in a nearly zero-overhead transition to the
next opcode. A successful prediction saves a trip through the eval-loop
including its unpredictable switch-case branch. Combined with the
processor's internal branch prediction, a successful PREDICT has the
effect of making the two opcodes run as if they were a single new opcode
with the bodies combined.
If collecting opcode statistics, your choices are to either keep the
predictions turned-on and interpret the results as if some opcodes
had been combined or turn-off predictions so that the opcode frequency
counter updates for both opcodes.
Opcode prediction is disabled with threaded code, since the latter allows
the CPU to record separate branch prediction information for each
opcode.
*/
#if defined(DYNAMIC_EXECUTION_PROFILE) || USE_COMPUTED_GOTOS
#define PREDICT(op) if (0) goto PRED_##op
#else
#define PREDICT(op) \
do{ \
_Py_CODEUNIT word = *next_instr; \
opcode = _Py_OPCODE(word); \
if (opcode == op){ \
oparg = _Py_OPARG(word); \
next_instr++; \
goto PRED_##op; \
} \
} while(0)
#endif
#define PREDICTED(op) PRED_##op:
/* Stack manipulation macros */
/* The stack can grow at most MAXINT deep, as co_nlocals and
co_stacksize are ints. */
#define STACK_LEVEL() ((int)(stack_pointer - f->f_valuestack))
#define EMPTY() (STACK_LEVEL() == 0)
#define TOP() (stack_pointer[-1])
#define SECOND() (stack_pointer[-2])
#define THIRD() (stack_pointer[-3])
#define FOURTH() (stack_pointer[-4])
#define PEEK(n) (stack_pointer[-(n)])
#define SET_TOP(v) (stack_pointer[-1] = (v))
#define SET_SECOND(v) (stack_pointer[-2] = (v))
#define SET_THIRD(v) (stack_pointer[-3] = (v))
#define SET_FOURTH(v) (stack_pointer[-4] = (v))
#define SET_VALUE(n, v) (stack_pointer[-(n)] = (v))
#define BASIC_STACKADJ(n) (stack_pointer += n)
#define BASIC_PUSH(v) (*stack_pointer++ = (v))
#define BASIC_POP() (*--stack_pointer)
#ifdef LLTRACE
#define PUSH(v) { (void)(BASIC_PUSH(v), \
lltrace && prtrace(TOP(), "push")); \
assert(STACK_LEVEL() <= co->co_stacksize); }
#define POP() ((void)(lltrace && prtrace(TOP(), "pop")), \
BASIC_POP())
#define STACKADJ(n) { (void)(BASIC_STACKADJ(n), \
lltrace && prtrace(TOP(), "stackadj")); \
assert(STACK_LEVEL() <= co->co_stacksize); }
#define EXT_POP(STACK_POINTER) ((void)(lltrace && \
prtrace((STACK_POINTER)[-1], "ext_pop")), \
*--(STACK_POINTER))
#else
#define PUSH(v) BASIC_PUSH(v)
#define POP() BASIC_POP()
#define STACKADJ(n) BASIC_STACKADJ(n)
#define EXT_POP(STACK_POINTER) (*--(STACK_POINTER))
#endif
/* Local variable macros */
#define GETLOCAL(i) (fastlocals[i])
/* The SETLOCAL() macro must not DECREF the local variable in-place and
then store the new value; it must copy the old value to a temporary
value, then store the new value, and then DECREF the temporary value.
This is because it is possible that during the DECREF the frame is
accessed by other code (e.g. a __del__ method or gc.collect()) and the
variable would be pointing to already-freed memory. */
#define SETLOCAL(i, value) do { PyObject *tmp = GETLOCAL(i); \
GETLOCAL(i) = value; \
Py_XDECREF(tmp); } while (0)
#define UNWIND_BLOCK(b) \
while (STACK_LEVEL() > (b)->b_level) { \
PyObject *v = POP(); \
Py_XDECREF(v); \
}
#define UNWIND_EXCEPT_HANDLER(b) \
do { \
PyObject *type, *value, *traceback; \
assert(STACK_LEVEL() >= (b)->b_level + 3); \
while (STACK_LEVEL() > (b)->b_level + 3) { \
value = POP(); \
Py_XDECREF(value); \
} \
type = tstate->exc_type; \
value = tstate->exc_value; \
traceback = tstate->exc_traceback; \
tstate->exc_type = POP(); \
tstate->exc_value = POP(); \
tstate->exc_traceback = POP(); \
Py_XDECREF(type); \
Py_XDECREF(value); \
Py_XDECREF(traceback); \
} while(0)
/* Start of code */
/* push frame */
if (Py_EnterRecursiveCall(""))
return NULL;
tstate->frame = f;
if (tstate->use_tracing) {
if (tstate->c_tracefunc != NULL) {
/* tstate->c_tracefunc, if defined, is a
function that will be called on *every* entry
to a code block. Its return value, if not
None, is a function that will be called at
the start of each executed line of code.
(Actually, the function must return itself
in order to continue tracing.) The trace
functions are called with three arguments:
a pointer to the current frame, a string
indicating why the function is called, and
an argument which depends on the situation.
The global trace function is also called
whenever an exception is detected. */
if (call_trace_protected(tstate->c_tracefunc,
tstate->c_traceobj,
tstate, f, PyTrace_CALL, Py_None)) {
/* Trace function raised an error */
goto exit_eval_frame;
}
}
if (tstate->c_profilefunc != NULL) {
/* Similar for c_profilefunc, except it needn't
return itself and isn't called for "line" events */
if (call_trace_protected(tstate->c_profilefunc,
tstate->c_profileobj,
tstate, f, PyTrace_CALL, Py_None)) {
/* Profile function raised an error */
goto exit_eval_frame;
}
}
}
if (PyDTrace_FUNCTION_ENTRY_ENABLED())
dtrace_function_entry(f);
co = f->f_code;
names = co->co_names;
consts = co->co_consts;
fastlocals = f->f_localsplus;
freevars = f->f_localsplus + co->co_nlocals;
assert(PyBytes_Check(co->co_code));
assert(PyBytes_GET_SIZE(co->co_code) <= INT_MAX);
assert(PyBytes_GET_SIZE(co->co_code) % sizeof(_Py_CODEUNIT) == 0);
assert(_Py_IS_ALIGNED(PyBytes_AS_STRING(co->co_code), sizeof(_Py_CODEUNIT)));
first_instr = (_Py_CODEUNIT *) PyBytes_AS_STRING(co->co_code);
/*
f->f_lasti refers to the index of the last instruction,
unless it's -1 in which case next_instr should be first_instr.
YIELD_FROM sets f_lasti to itself, in order to repeatedly yield
multiple values.
When the PREDICT() macros are enabled, some opcode pairs follow in
direct succession without updating f->f_lasti. A successful
prediction effectively links the two codes together as if they
were a single new opcode; accordingly,f->f_lasti will point to
the first code in the pair (for instance, GET_ITER followed by
FOR_ITER is effectively a single opcode and f->f_lasti will point
to the beginning of the combined pair.)
*/
assert(f->f_lasti >= -1);
next_instr = first_instr;
if (f->f_lasti >= 0) {
assert(f->f_lasti % sizeof(_Py_CODEUNIT) == 0);
next_instr += f->f_lasti / sizeof(_Py_CODEUNIT) + 1;
}
stack_pointer = f->f_stacktop;
assert(stack_pointer != NULL);
f->f_stacktop = NULL; /* remains NULL unless yield suspends frame */
f->f_executing = 1;
if (co->co_flags & (CO_GENERATOR | CO_COROUTINE | CO_ASYNC_GENERATOR)) {
if (!throwflag && f->f_exc_type != NULL && f->f_exc_type != Py_None) {
/* We were in an except handler when we left,
restore the exception state which was put aside
(see YIELD_VALUE). */
swap_exc_state(tstate, f);
}
else
save_exc_state(tstate, f);
}
#ifdef LLTRACE
lltrace = _PyDict_GetItemId(f->f_globals, &PyId___ltrace__) != NULL;
#endif
why = WHY_NOT;
if (throwflag) /* support for generator.throw() */
goto error;
#ifdef Py_DEBUG
/* PyEval_EvalFrameEx() must not be called with an exception set,
because it may clear it (directly or indirectly) and so the
caller loses its exception */
assert(!PyErr_Occurred());
#endif
for (;;) {
assert(stack_pointer >= f->f_valuestack); /* else underflow */
assert(STACK_LEVEL() <= co->co_stacksize); /* else overflow */
assert(!PyErr_Occurred());
/* Do periodic things. Doing this every time through
the loop would add too much overhead, so we do it
only every Nth instruction. We also do it if
``pendingcalls_to_do'' is set, i.e. when an asynchronous
event needs attention (e.g. a signal handler or
async I/O handler); see Py_AddPendingCall() and
Py_MakePendingCalls() above. */
if (_Py_atomic_load_relaxed(&eval_breaker)) {
if (_Py_OPCODE(*next_instr) == SETUP_FINALLY) {
/* Make the last opcode before
a try: finally: block uninterruptible. */
goto fast_next_opcode;
}
if (_Py_atomic_load_relaxed(&pendingcalls_to_do)) {
if (Py_MakePendingCalls() < 0)
goto error;
}
#ifdef WITH_THREAD
if (_Py_atomic_load_relaxed(&gil_drop_request)) {
/* Give another thread a chance */
if (PyThreadState_Swap(NULL) != tstate)
Py_FatalError("ceval: tstate mix-up");
drop_gil(tstate);
/* Other threads may run now */
take_gil(tstate);
/* Check if we should make a quick exit. */
if (_Py_Finalizing && _Py_Finalizing != tstate) {
drop_gil(tstate);
PyThread_exit_thread();
}
if (PyThreadState_Swap(tstate) != NULL)
Py_FatalError("ceval: orphan tstate");
}
#endif
/* Check for asynchronous exceptions. */
if (tstate->async_exc != NULL) {
PyObject *exc = tstate->async_exc;
tstate->async_exc = NULL;
UNSIGNAL_ASYNC_EXC();
PyErr_SetNone(exc);
Py_DECREF(exc);
goto error;
}
}
fast_next_opcode:
f->f_lasti = INSTR_OFFSET();
if (PyDTrace_LINE_ENABLED())
maybe_dtrace_line(f, &instr_lb, &instr_ub, &instr_prev);
/* line-by-line tracing support */
if (_Py_TracingPossible &&
tstate->c_tracefunc != NULL && !tstate->tracing) {
int err;
/* see maybe_call_line_trace
for expository comments */
f->f_stacktop = stack_pointer;
err = maybe_call_line_trace(tstate->c_tracefunc,
tstate->c_traceobj,
tstate, f,
&instr_lb, &instr_ub, &instr_prev);
/* Reload possibly changed frame fields */
JUMPTO(f->f_lasti);
if (f->f_stacktop != NULL) {
stack_pointer = f->f_stacktop;
f->f_stacktop = NULL;
}
if (err)
/* trace function raised an exception */
goto error;
}
/* Extract opcode and argument */
NEXTOPARG();
dispatch_opcode:
#ifdef DYNAMIC_EXECUTION_PROFILE
#ifdef DXPAIRS
dxpairs[lastopcode][opcode]++;
lastopcode = opcode;
#endif
dxp[opcode]++;
#endif
#ifdef LLTRACE
/* Instruction tracing */
if (lltrace) {
if (HAS_ARG(opcode)) {
printf("%d: %d, %d\n",
f->f_lasti, opcode, oparg);
}
else {
printf("%d: %d\n",
f->f_lasti, opcode);
}
}
#endif
switch (opcode) {
/* BEWARE!
It is essential that any operation that fails sets either
x to NULL, err to nonzero, or why to anything but WHY_NOT,
and that no operation that succeeds does this! */
TARGET(NOP)
FAST_DISPATCH();
TARGET(LOAD_FAST) {
PyObject *value = GETLOCAL(oparg);
if (value == NULL) {
format_exc_check_arg(PyExc_UnboundLocalError,
UNBOUNDLOCAL_ERROR_MSG,
PyTuple_GetItem(co->co_varnames, oparg));
goto error;
}
Py_INCREF(value);
PUSH(value);
FAST_DISPATCH();
}
PREDICTED(LOAD_CONST);
TARGET(LOAD_CONST) {
PyObject *value = GETITEM(consts, oparg);
Py_INCREF(value);
PUSH(value);
FAST_DISPATCH();
}
PREDICTED(STORE_FAST);
TARGET(STORE_FAST) {
PyObject *value = POP();
SETLOCAL(oparg, value);
FAST_DISPATCH();
}
TARGET(POP_TOP) {
PyObject *value = POP();
Py_DECREF(value);
FAST_DISPATCH();
}
TARGET(ROT_TWO) {
PyObject *top = TOP();
PyObject *second = SECOND();
SET_TOP(second);
SET_SECOND(top);
FAST_DISPATCH();
}
TARGET(ROT_THREE) {
PyObject *top = TOP();
PyObject *second = SECOND();
PyObject *third = THIRD();
SET_TOP(second);
SET_SECOND(third);
SET_THIRD(top);
FAST_DISPATCH();
}
TARGET(DUP_TOP) {
PyObject *top = TOP();
Py_INCREF(top);
PUSH(top);
FAST_DISPATCH();
}
TARGET(DUP_TOP_TWO) {
PyObject *top = TOP();
PyObject *second = SECOND();
Py_INCREF(top);
Py_INCREF(second);
STACKADJ(2);
SET_TOP(top);
SET_SECOND(second);
FAST_DISPATCH();
}
TARGET(UNARY_POSITIVE) {
PyObject *value = TOP();
PyObject *res = PyNumber_Positive(value);
Py_DECREF(value);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
TARGET(UNARY_NEGATIVE) {
PyObject *value = TOP();
PyObject *res = PyNumber_Negative(value);
Py_DECREF(value);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
TARGET(UNARY_NOT) {
PyObject *value = TOP();
int err = PyObject_IsTrue(value);
Py_DECREF(value);
if (err == 0) {
Py_INCREF(Py_True);
SET_TOP(Py_True);
DISPATCH();
}
else if (err > 0) {
Py_INCREF(Py_False);
SET_TOP(Py_False);
err = 0;
DISPATCH();
}
STACKADJ(-1);
goto error;
}
TARGET(UNARY_INVERT) {
PyObject *value = TOP();
PyObject *res = PyNumber_Invert(value);
Py_DECREF(value);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
TARGET(BINARY_POWER) {
PyObject *exp = POP();
PyObject *base = TOP();
PyObject *res = PyNumber_Power(base, exp, Py_None);
Py_DECREF(base);
Py_DECREF(exp);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
TARGET(BINARY_MULTIPLY) {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_Multiply(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
TARGET(BINARY_MATRIX_MULTIPLY) {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_MatrixMultiply(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
TARGET(BINARY_TRUE_DIVIDE) {
PyObject *divisor = POP();
PyObject *dividend = TOP();
PyObject *quotient = PyNumber_TrueDivide(dividend, divisor);
Py_DECREF(dividend);
Py_DECREF(divisor);
SET_TOP(quotient);
if (quotient == NULL)
goto error;
DISPATCH();
}
TARGET(BINARY_FLOOR_DIVIDE) {
PyObject *divisor = POP();
PyObject *dividend = TOP();
PyObject *quotient = PyNumber_FloorDivide(dividend, divisor);
Py_DECREF(dividend);
Py_DECREF(divisor);
SET_TOP(quotient);
if (quotient == NULL)
goto error;
DISPATCH();
}
TARGET(BINARY_MODULO) {
PyObject *divisor = POP();
PyObject *dividend = TOP();
PyObject *res = PyUnicode_CheckExact(dividend) ?
PyUnicode_Format(dividend, divisor) :
PyNumber_Remainder(dividend, divisor);
Py_DECREF(divisor);
Py_DECREF(dividend);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
TARGET(BINARY_ADD) {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *sum;
/* NOTE(haypo): Please don't try to micro-optimize int+int on
CPython using bytecode, it is simply worthless.
See http://bugs.python.org/issue21955 and
http://bugs.python.org/issue10044 for the discussion. In short,
no patch shown any impact on a realistic benchmark, only a minor
speedup on microbenchmarks. */
if (PyUnicode_CheckExact(left) &&
PyUnicode_CheckExact(right)) {
sum = unicode_concatenate(left, right, f, next_instr);
/* unicode_concatenate consumed the ref to left */
}
else {
sum = PyNumber_Add(left, right);
Py_DECREF(left);
}
Py_DECREF(right);
SET_TOP(sum);
if (sum == NULL)
goto error;
DISPATCH();
}
TARGET(BINARY_SUBTRACT) {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *diff = PyNumber_Subtract(left, right);
Py_DECREF(right);
Py_DECREF(left);
SET_TOP(diff);
if (diff == NULL)
goto error;
DISPATCH();
}
TARGET(BINARY_SUBSCR) {
PyObject *sub = POP();
PyObject *container = TOP();
PyObject *res = PyObject_GetItem(container, sub);
Py_DECREF(container);
Py_DECREF(sub);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
TARGET(BINARY_LSHIFT) {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_Lshift(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
TARGET(BINARY_RSHIFT) {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_Rshift(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
TARGET(BINARY_AND) {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_And(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
TARGET(BINARY_XOR) {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_Xor(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
TARGET(BINARY_OR) {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_Or(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
TARGET(LIST_APPEND) {
PyObject *v = POP();
PyObject *list = PEEK(oparg);
int err;
err = PyList_Append(list, v);
Py_DECREF(v);
if (err != 0)
goto error;
PREDICT(JUMP_ABSOLUTE);
DISPATCH();
}
TARGET(SET_ADD) {
PyObject *v = POP();
PyObject *set = PEEK(oparg);
int err;
err = PySet_Add(set, v);
Py_DECREF(v);
if (err != 0)
goto error;
PREDICT(JUMP_ABSOLUTE);
DISPATCH();
}
TARGET(INPLACE_POWER) {
PyObject *exp = POP();
PyObject *base = TOP();
PyObject *res = PyNumber_InPlacePower(base, exp, Py_None);
Py_DECREF(base);
Py_DECREF(exp);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
TARGET(INPLACE_MULTIPLY) {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_InPlaceMultiply(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
TARGET(INPLACE_MATRIX_MULTIPLY) {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_InPlaceMatrixMultiply(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
TARGET(INPLACE_TRUE_DIVIDE) {
PyObject *divisor = POP();
PyObject *dividend = TOP();
PyObject *quotient = PyNumber_InPlaceTrueDivide(dividend, divisor);
Py_DECREF(dividend);
Py_DECREF(divisor);
SET_TOP(quotient);
if (quotient == NULL)
goto error;
DISPATCH();
}
TARGET(INPLACE_FLOOR_DIVIDE) {
PyObject *divisor = POP();
PyObject *dividend = TOP();
PyObject *quotient = PyNumber_InPlaceFloorDivide(dividend, divisor);
Py_DECREF(dividend);
Py_DECREF(divisor);
SET_TOP(quotient);
if (quotient == NULL)
goto error;
DISPATCH();
}
TARGET(INPLACE_MODULO) {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *mod = PyNumber_InPlaceRemainder(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(mod);
if (mod == NULL)
goto error;
DISPATCH();
}
TARGET(INPLACE_ADD) {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *sum;
if (PyUnicode_CheckExact(left) && PyUnicode_CheckExact(right)) {
sum = unicode_concatenate(left, right, f, next_instr);
/* unicode_concatenate consumed the ref to left */
}
else {
sum = PyNumber_InPlaceAdd(left, right);
Py_DECREF(left);
}
Py_DECREF(right);
SET_TOP(sum);
if (sum == NULL)
goto error;
DISPATCH();
}
TARGET(INPLACE_SUBTRACT) {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *diff = PyNumber_InPlaceSubtract(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(diff);
if (diff == NULL)
goto error;
DISPATCH();
}
TARGET(INPLACE_LSHIFT) {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_InPlaceLshift(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
TARGET(INPLACE_RSHIFT) {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_InPlaceRshift(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
TARGET(INPLACE_AND) {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_InPlaceAnd(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
TARGET(INPLACE_XOR) {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_InPlaceXor(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
TARGET(INPLACE_OR) {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_InPlaceOr(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
TARGET(STORE_SUBSCR) {
PyObject *sub = TOP();
PyObject *container = SECOND();
PyObject *v = THIRD();
int err;
STACKADJ(-3);
/* container[sub] = v */
err = PyObject_SetItem(container, sub, v);
Py_DECREF(v);
Py_DECREF(container);
Py_DECREF(sub);
if (err != 0)
goto error;
DISPATCH();
}
TARGET(STORE_ANNOTATION) {
_Py_IDENTIFIER(__annotations__);
PyObject *ann_dict;
PyObject *ann = POP();
PyObject *name = GETITEM(names, oparg);
int err;
if (f->f_locals == NULL) {
PyErr_Format(PyExc_SystemError,
"no locals found when storing annotation");
Py_DECREF(ann);
goto error;
}
/* first try to get __annotations__ from locals... */
if (PyDict_CheckExact(f->f_locals)) {
ann_dict = _PyDict_GetItemId(f->f_locals,
&PyId___annotations__);
if (ann_dict == NULL) {
PyErr_SetString(PyExc_NameError,
"__annotations__ not found");
Py_DECREF(ann);
goto error;
}
Py_INCREF(ann_dict);
}
else {
PyObject *ann_str = _PyUnicode_FromId(&PyId___annotations__);
if (ann_str == NULL) {
Py_DECREF(ann);
goto error;
}
ann_dict = PyObject_GetItem(f->f_locals, ann_str);
if (ann_dict == NULL) {
if (PyErr_ExceptionMatches(PyExc_KeyError)) {
PyErr_SetString(PyExc_NameError,
"__annotations__ not found");
}
Py_DECREF(ann);
goto error;
}
}
/* ...if succeeded, __annotations__[name] = ann */
if (PyDict_CheckExact(ann_dict)) {
err = PyDict_SetItem(ann_dict, name, ann);
}
else {
err = PyObject_SetItem(ann_dict, name, ann);
}
Py_DECREF(ann_dict);
Py_DECREF(ann);
if (err != 0) {
goto error;
}
DISPATCH();
}
TARGET(DELETE_SUBSCR) {
PyObject *sub = TOP();
PyObject *container = SECOND();
int err;
STACKADJ(-2);
/* del container[sub] */
err = PyObject_DelItem(container, sub);
Py_DECREF(container);
Py_DECREF(sub);
if (err != 0)
goto error;
DISPATCH();
}
TARGET(PRINT_EXPR) {
_Py_IDENTIFIER(displayhook);
PyObject *value = POP();
PyObject *hook = _PySys_GetObjectId(&PyId_displayhook);
PyObject *res;
if (hook == NULL) {
PyErr_SetString(PyExc_RuntimeError,
"lost sys.displayhook");
Py_DECREF(value);
goto error;
}
res = PyObject_CallFunctionObjArgs(hook, value, NULL);
Py_DECREF(value);
if (res == NULL)
goto error;
Py_DECREF(res);
DISPATCH();
}
#ifdef CASE_TOO_BIG
default: switch (opcode) {
#endif
TARGET(RAISE_VARARGS) {
PyObject *cause = NULL, *exc = NULL;
switch (oparg) {
case 2:
cause = POP(); /* cause */
case 1:
exc = POP(); /* exc */
case 0: /* Fallthrough */
if (do_raise(exc, cause)) {
why = WHY_EXCEPTION;
goto fast_block_end;
}
break;
default:
PyErr_SetString(PyExc_SystemError,
"bad RAISE_VARARGS oparg");
break;
}
goto error;
}
TARGET(RETURN_VALUE) {
retval = POP();
why = WHY_RETURN;
goto fast_block_end;
}
TARGET(GET_AITER) {
unaryfunc getter = NULL;
PyObject *iter = NULL;
PyObject *awaitable = NULL;
PyObject *obj = TOP();
PyTypeObject *type = Py_TYPE(obj);
if (type->tp_as_async != NULL) {
getter = type->tp_as_async->am_aiter;
}
if (getter != NULL) {
iter = (*getter)(obj);
Py_DECREF(obj);
if (iter == NULL) {
SET_TOP(NULL);
goto error;
}
}
else {
SET_TOP(NULL);
PyErr_Format(
PyExc_TypeError,
"'async for' requires an object with "
"__aiter__ method, got %.100s",
type->tp_name);
Py_DECREF(obj);
goto error;
}
if (Py_TYPE(iter)->tp_as_async != NULL &&
Py_TYPE(iter)->tp_as_async->am_anext != NULL) {
/* Starting with CPython 3.5.2 __aiter__ should return
asynchronous iterators directly (not awaitables that
resolve to asynchronous iterators.)
Therefore, we check if the object that was returned
from __aiter__ has an __anext__ method. If it does,
we wrap it in an awaitable that resolves to `iter`.
See http://bugs.python.org/issue27243 for more
details.
*/
PyObject *wrapper = _PyAIterWrapper_New(iter);
Py_DECREF(iter);
SET_TOP(wrapper);
DISPATCH();
}
awaitable = _PyCoro_GetAwaitableIter(iter);
if (awaitable == NULL) {
SET_TOP(NULL);
PyErr_Format(
PyExc_TypeError,
"'async for' received an invalid object "
"from __aiter__: %.100s",
Py_TYPE(iter)->tp_name);
Py_DECREF(iter);
goto error;
} else {
Py_DECREF(iter);
if (PyErr_WarnFormat(
PyExc_DeprecationWarning, 1,
"'%.100s' implements legacy __aiter__ protocol; "
"__aiter__ should return an asynchronous "
"iterator, not awaitable",
type->tp_name))
{
/* Warning was converted to an error. */
Py_DECREF(awaitable);
SET_TOP(NULL);
goto error;
}
}
SET_TOP(awaitable);
PREDICT(LOAD_CONST);
DISPATCH();
}
TARGET(GET_ANEXT) {
unaryfunc getter = NULL;
PyObject *next_iter = NULL;
PyObject *awaitable = NULL;
PyObject *aiter = TOP();
PyTypeObject *type = Py_TYPE(aiter);
if (PyAsyncGen_CheckExact(aiter)) {
awaitable = type->tp_as_async->am_anext(aiter);
if (awaitable == NULL) {
goto error;
}
} else {
if (type->tp_as_async != NULL){
getter = type->tp_as_async->am_anext;
}
if (getter != NULL) {
next_iter = (*getter)(aiter);
if (next_iter == NULL) {
goto error;
}
}
else {
PyErr_Format(
PyExc_TypeError,
"'async for' requires an iterator with "
"__anext__ method, got %.100s",
type->tp_name);
goto error;
}
awaitable = _PyCoro_GetAwaitableIter(next_iter);
if (awaitable == NULL) {
PyErr_Format(
PyExc_TypeError,
"'async for' received an invalid object "
"from __anext__: %.100s",
Py_TYPE(next_iter)->tp_name);
Py_DECREF(next_iter);
goto error;
} else {
Py_DECREF(next_iter);
}
}
PUSH(awaitable);
PREDICT(LOAD_CONST);
DISPATCH();
}
PREDICTED(GET_AWAITABLE);
TARGET(GET_AWAITABLE) {
PyObject *iterable = TOP();
PyObject *iter = _PyCoro_GetAwaitableIter(iterable);
Py_DECREF(iterable);
if (iter != NULL && PyCoro_CheckExact(iter)) {
PyObject *yf = _PyGen_yf((PyGenObject*)iter);
if (yf != NULL) {
/* `iter` is a coroutine object that is being
awaited, `yf` is a pointer to the current awaitable
being awaited on. */
Py_DECREF(yf);
Py_CLEAR(iter);
PyErr_SetString(
PyExc_RuntimeError,
"coroutine is being awaited already");
/* The code below jumps to `error` if `iter` is NULL. */
}
}
SET_TOP(iter); /* Even if it's NULL */
if (iter == NULL) {
goto error;
}
PREDICT(LOAD_CONST);
DISPATCH();
}
TARGET(YIELD_FROM) {
PyObject *v = POP();
PyObject *receiver = TOP();
int err;
if (PyGen_CheckExact(receiver) || PyCoro_CheckExact(receiver)) {
retval = _PyGen_Send((PyGenObject *)receiver, v);
} else {
_Py_IDENTIFIER(send);
if (v == Py_None)
retval = Py_TYPE(receiver)->tp_iternext(receiver);
else
retval = _PyObject_CallMethodIdObjArgs(receiver, &PyId_send, v, NULL);
}
Py_DECREF(v);
if (retval == NULL) {
PyObject *val;
if (tstate->c_tracefunc != NULL
&& PyErr_ExceptionMatches(PyExc_StopIteration))
call_exc_trace(tstate->c_tracefunc, tstate->c_traceobj, tstate, f);
err = _PyGen_FetchStopIterationValue(&val);
if (err < 0)
goto error;
Py_DECREF(receiver);
SET_TOP(val);
DISPATCH();
}
/* receiver remains on stack, retval is value to be yielded */
f->f_stacktop = stack_pointer;
why = WHY_YIELD;
/* and repeat... */
assert(f->f_lasti >= (int)sizeof(_Py_CODEUNIT));
f->f_lasti -= sizeof(_Py_CODEUNIT);
goto fast_yield;
}
TARGET(YIELD_VALUE) {
retval = POP();
if (co->co_flags & CO_ASYNC_GENERATOR) {
PyObject *w = _PyAsyncGenValueWrapperNew(retval);
Py_DECREF(retval);
if (w == NULL) {
retval = NULL;
goto error;
}
retval = w;
}
f->f_stacktop = stack_pointer;
why = WHY_YIELD;
goto fast_yield;
}
TARGET(POP_EXCEPT) {
PyTryBlock *b = PyFrame_BlockPop(f);
if (b->b_type != EXCEPT_HANDLER) {
PyErr_SetString(PyExc_SystemError,
"popped block is not an except handler");
goto error;
}
UNWIND_EXCEPT_HANDLER(b);
DISPATCH();
}
PREDICTED(POP_BLOCK);
TARGET(POP_BLOCK) {
PyTryBlock *b = PyFrame_BlockPop(f);
UNWIND_BLOCK(b);
DISPATCH();
}
PREDICTED(END_FINALLY);
TARGET(END_FINALLY) {
PyObject *status = POP();
if (PyLong_Check(status)) {
why = (enum why_code) PyLong_AS_LONG(status);
assert(why != WHY_YIELD && why != WHY_EXCEPTION);
if (why == WHY_RETURN ||
why == WHY_CONTINUE)
retval = POP();
if (why == WHY_SILENCED) {
/* An exception was silenced by 'with', we must
manually unwind the EXCEPT_HANDLER block which was
created when the exception was caught, otherwise
the stack will be in an inconsistent state. */
PyTryBlock *b = PyFrame_BlockPop(f);
assert(b->b_type == EXCEPT_HANDLER);
UNWIND_EXCEPT_HANDLER(b);
why = WHY_NOT;
Py_DECREF(status);
DISPATCH();
}
Py_DECREF(status);
goto fast_block_end;
}
else if (PyExceptionClass_Check(status)) {
PyObject *exc = POP();
PyObject *tb = POP();
PyErr_Restore(status, exc, tb);
why = WHY_EXCEPTION;
goto fast_block_end;
}
else if (status != Py_None) {
PyErr_SetString(PyExc_SystemError,
"'finally' pops bad exception");
Py_DECREF(status);
goto error;
}
Py_DECREF(status);
DISPATCH();
}
TARGET(LOAD_BUILD_CLASS) {
_Py_IDENTIFIER(__build_class__);
PyObject *bc;
if (PyDict_CheckExact(f->f_builtins)) {
bc = _PyDict_GetItemId(f->f_builtins, &PyId___build_class__);
if (bc == NULL) {
PyErr_SetString(PyExc_NameError,
"__build_class__ not found");
goto error;
}
Py_INCREF(bc);
}
else {
PyObject *build_class_str = _PyUnicode_FromId(&PyId___build_class__);
if (build_class_str == NULL)
goto error;
bc = PyObject_GetItem(f->f_builtins, build_class_str);
if (bc == NULL) {
if (PyErr_ExceptionMatches(PyExc_KeyError))
PyErr_SetString(PyExc_NameError,
"__build_class__ not found");
goto error;
}
}
PUSH(bc);
DISPATCH();
}
TARGET(STORE_NAME) {
PyObject *name = GETITEM(names, oparg);
PyObject *v = POP();
PyObject *ns = f->f_locals;
int err;
if (ns == NULL) {
PyErr_Format(PyExc_SystemError,
"no locals found when storing %R", name);
Py_DECREF(v);
goto error;
}
if (PyDict_CheckExact(ns))
err = PyDict_SetItem(ns, name, v);
else
err = PyObject_SetItem(ns, name, v);
Py_DECREF(v);
if (err != 0)
goto error;
DISPATCH();
}
TARGET(DELETE_NAME) {
PyObject *name = GETITEM(names, oparg);
PyObject *ns = f->f_locals;
int err;
if (ns == NULL) {
PyErr_Format(PyExc_SystemError,
"no locals when deleting %R", name);
goto error;
}
err = PyObject_DelItem(ns, name);
if (err != 0) {
format_exc_check_arg(PyExc_NameError,
NAME_ERROR_MSG,
name);
goto error;
}
DISPATCH();
}
PREDICTED(UNPACK_SEQUENCE);
TARGET(UNPACK_SEQUENCE) {
PyObject *seq = POP(), *item, **items;
if (PyTuple_CheckExact(seq) &&
PyTuple_GET_SIZE(seq) == oparg) {
items = ((PyTupleObject *)seq)->ob_item;
while (oparg--) {
item = items[oparg];
Py_INCREF(item);
PUSH(item);
}
} else if (PyList_CheckExact(seq) &&
PyList_GET_SIZE(seq) == oparg) {
items = ((PyListObject *)seq)->ob_item;
while (oparg--) {
item = items[oparg];
Py_INCREF(item);
PUSH(item);
}
} else if (unpack_iterable(seq, oparg, -1,
stack_pointer + oparg)) {
STACKADJ(oparg);
} else {
/* unpack_iterable() raised an exception */
Py_DECREF(seq);
goto error;
}
Py_DECREF(seq);
DISPATCH();
}
TARGET(UNPACK_EX) {
int totalargs = 1 + (oparg & 0xFF) + (oparg >> 8);
PyObject *seq = POP();
if (unpack_iterable(seq, oparg & 0xFF, oparg >> 8,
stack_pointer + totalargs)) {
stack_pointer += totalargs;
} else {
Py_DECREF(seq);
goto error;
}
Py_DECREF(seq);
DISPATCH();
}
TARGET(STORE_ATTR) {
PyObject *name = GETITEM(names, oparg);
PyObject *owner = TOP();
PyObject *v = SECOND();
int err;
STACKADJ(-2);
err = PyObject_SetAttr(owner, name, v);
Py_DECREF(v);
Py_DECREF(owner);
if (err != 0)
goto error;
DISPATCH();
}
TARGET(DELETE_ATTR) {
PyObject *name = GETITEM(names, oparg);
PyObject *owner = POP();
int err;
err = PyObject_SetAttr(owner, name, (PyObject *)NULL);
Py_DECREF(owner);
if (err != 0)
goto error;
DISPATCH();
}
TARGET(STORE_GLOBAL) {
PyObject *name = GETITEM(names, oparg);
PyObject *v = POP();
int err;
err = PyDict_SetItem(f->f_globals, name, v);
Py_DECREF(v);
if (err != 0)
goto error;
DISPATCH();
}
TARGET(DELETE_GLOBAL) {
PyObject *name = GETITEM(names, oparg);
int err;
err = PyDict_DelItem(f->f_globals, name);
if (err != 0) {
format_exc_check_arg(
PyExc_NameError, NAME_ERROR_MSG, name);
goto error;
}
DISPATCH();
}
TARGET(LOAD_NAME) {
PyObject *name = GETITEM(names, oparg);
PyObject *locals = f->f_locals;
PyObject *v;
if (locals == NULL) {
PyErr_Format(PyExc_SystemError,
"no locals when loading %R", name);
goto error;
}
if (PyDict_CheckExact(locals)) {
v = PyDict_GetItem(locals, name);
Py_XINCREF(v);
}
else {
v = PyObject_GetItem(locals, name);
if (v == NULL) {
if (!PyErr_ExceptionMatches(PyExc_KeyError))
goto error;
PyErr_Clear();
}
}
if (v == NULL) {
v = PyDict_GetItem(f->f_globals, name);
Py_XINCREF(v);
if (v == NULL) {
if (PyDict_CheckExact(f->f_builtins)) {
v = PyDict_GetItem(f->f_builtins, name);
if (v == NULL) {
format_exc_check_arg(
PyExc_NameError,
NAME_ERROR_MSG, name);
goto error;
}
Py_INCREF(v);
}
else {
v = PyObject_GetItem(f->f_builtins, name);
if (v == NULL) {
if (PyErr_ExceptionMatches(PyExc_KeyError))
format_exc_check_arg(
PyExc_NameError,
NAME_ERROR_MSG, name);
goto error;
}
}
}
}
PUSH(v);
DISPATCH();
}
TARGET(LOAD_GLOBAL) {
PyObject *name = GETITEM(names, oparg);
PyObject *v;
if (PyDict_CheckExact(f->f_globals)
&& PyDict_CheckExact(f->f_builtins))
{
v = _PyDict_LoadGlobal((PyDictObject *)f->f_globals,
(PyDictObject *)f->f_builtins,
name);
if (v == NULL) {
if (!_PyErr_OCCURRED()) {
/* _PyDict_LoadGlobal() returns NULL without raising
* an exception if the key doesn't exist */
format_exc_check_arg(PyExc_NameError,
NAME_ERROR_MSG, name);
}
goto error;
}
Py_INCREF(v);
}
else {
/* Slow-path if globals or builtins is not a dict */
/* namespace 1: globals */
v = PyObject_GetItem(f->f_globals, name);
if (v == NULL) {
if (!PyErr_ExceptionMatches(PyExc_KeyError))
goto error;
PyErr_Clear();
/* namespace 2: builtins */
v = PyObject_GetItem(f->f_builtins, name);
if (v == NULL) {
if (PyErr_ExceptionMatches(PyExc_KeyError))
format_exc_check_arg(
PyExc_NameError,
NAME_ERROR_MSG, name);
goto error;
}
}
}
PUSH(v);
DISPATCH();
}
TARGET(DELETE_FAST) {
PyObject *v = GETLOCAL(oparg);
if (v != NULL) {
SETLOCAL(oparg, NULL);
DISPATCH();
}
format_exc_check_arg(
PyExc_UnboundLocalError,
UNBOUNDLOCAL_ERROR_MSG,
PyTuple_GetItem(co->co_varnames, oparg)
);
goto error;
}
TARGET(DELETE_DEREF) {
PyObject *cell = freevars[oparg];
PyObject *oldobj = PyCell_GET(cell);
if (oldobj != NULL) {
PyCell_SET(cell, NULL);
Py_DECREF(oldobj);
DISPATCH();
}
format_exc_unbound(co, oparg);
goto error;
}
TARGET(LOAD_CLOSURE) {
PyObject *cell = freevars[oparg];
Py_INCREF(cell);
PUSH(cell);
DISPATCH();
}
TARGET(LOAD_CLASSDEREF) {
PyObject *name, *value, *locals = f->f_locals;
Py_ssize_t idx;
assert(locals);
assert(oparg >= PyTuple_GET_SIZE(co->co_cellvars));
idx = oparg - PyTuple_GET_SIZE(co->co_cellvars);
assert(idx >= 0 && idx < PyTuple_GET_SIZE(co->co_freevars));
name = PyTuple_GET_ITEM(co->co_freevars, idx);
if (PyDict_CheckExact(locals)) {
value = PyDict_GetItem(locals, name);
Py_XINCREF(value);
}
else {
value = PyObject_GetItem(locals, name);
if (value == NULL) {
if (!PyErr_ExceptionMatches(PyExc_KeyError))
goto error;
PyErr_Clear();
}
}
if (!value) {
PyObject *cell = freevars[oparg];
value = PyCell_GET(cell);
if (value == NULL) {
format_exc_unbound(co, oparg);
goto error;
}
Py_INCREF(value);
}
PUSH(value);
DISPATCH();
}
TARGET(LOAD_DEREF) {
PyObject *cell = freevars[oparg];
PyObject *value = PyCell_GET(cell);
if (value == NULL) {
format_exc_unbound(co, oparg);
goto error;
}
Py_INCREF(value);
PUSH(value);
DISPATCH();
}
TARGET(STORE_DEREF) {
PyObject *v = POP();
PyObject *cell = freevars[oparg];
PyObject *oldobj = PyCell_GET(cell);
PyCell_SET(cell, v);
Py_XDECREF(oldobj);
DISPATCH();
}
TARGET(BUILD_STRING) {
PyObject *str;
PyObject *empty = PyUnicode_New(0, 0);
if (empty == NULL) {
goto error;
}
str = _PyUnicode_JoinArray(empty, stack_pointer - oparg, oparg);
Py_DECREF(empty);
if (str == NULL)
goto error;
while (--oparg >= 0) {
PyObject *item = POP();
Py_DECREF(item);
}
PUSH(str);
DISPATCH();
}
TARGET(BUILD_TUPLE) {
PyObject *tup = PyTuple_New(oparg);
if (tup == NULL)
goto error;
while (--oparg >= 0) {
PyObject *item = POP();
PyTuple_SET_ITEM(tup, oparg, item);
}
PUSH(tup);
DISPATCH();
}
TARGET(BUILD_LIST) {
PyObject *list = PyList_New(oparg);
if (list == NULL)
goto error;
while (--oparg >= 0) {
PyObject *item = POP();
PyList_SET_ITEM(list, oparg, item);
}
PUSH(list);
DISPATCH();
}
TARGET(BUILD_TUPLE_UNPACK_WITH_CALL)
TARGET(BUILD_TUPLE_UNPACK)
TARGET(BUILD_LIST_UNPACK) {
int convert_to_tuple = opcode != BUILD_LIST_UNPACK;
Py_ssize_t i;
PyObject *sum = PyList_New(0);
PyObject *return_value;
if (sum == NULL)
goto error;
for (i = oparg; i > 0; i--) {
PyObject *none_val;
none_val = _PyList_Extend((PyListObject *)sum, PEEK(i));
if (none_val == NULL) {
if (opcode == BUILD_TUPLE_UNPACK_WITH_CALL &&
PyErr_ExceptionMatches(PyExc_TypeError)) {
PyObject *func = PEEK(1 + oparg);
PyErr_Format(PyExc_TypeError,
"%.200s%.200s argument after * "
"must be an iterable, not %.200s",
PyEval_GetFuncName(func),
PyEval_GetFuncDesc(func),
PEEK(i)->ob_type->tp_name);
}
Py_DECREF(sum);
goto error;
}
Py_DECREF(none_val);
}
if (convert_to_tuple) {
return_value = PyList_AsTuple(sum);
Py_DECREF(sum);
if (return_value == NULL)
goto error;
}
else {
return_value = sum;
}
while (oparg--)
Py_DECREF(POP());
PUSH(return_value);
DISPATCH();
}
TARGET(BUILD_SET) {
PyObject *set = PySet_New(NULL);
int err = 0;
int i;
if (set == NULL)
goto error;
for (i = oparg; i > 0; i--) {
PyObject *item = PEEK(i);
if (err == 0)
err = PySet_Add(set, item);
Py_DECREF(item);
}
STACKADJ(-oparg);
if (err != 0) {
Py_DECREF(set);
goto error;
}
PUSH(set);
DISPATCH();
}
TARGET(BUILD_SET_UNPACK) {
Py_ssize_t i;
PyObject *sum = PySet_New(NULL);
if (sum == NULL)
goto error;
for (i = oparg; i > 0; i--) {
if (_PySet_Update(sum, PEEK(i)) < 0) {
Py_DECREF(sum);
goto error;
}
}
while (oparg--)
Py_DECREF(POP());
PUSH(sum);
DISPATCH();
}
TARGET(BUILD_MAP) {
Py_ssize_t i;
PyObject *map = _PyDict_NewPresized((Py_ssize_t)oparg);
if (map == NULL)
goto error;
for (i = oparg; i > 0; i--) {
int err;
PyObject *key = PEEK(2*i);
PyObject *value = PEEK(2*i - 1);
err = PyDict_SetItem(map, key, value);
if (err != 0) {
Py_DECREF(map);
goto error;
}
}
while (oparg--) {
Py_DECREF(POP());
Py_DECREF(POP());
}
PUSH(map);
DISPATCH();
}
TARGET(SETUP_ANNOTATIONS) {
_Py_IDENTIFIER(__annotations__);
int err;
PyObject *ann_dict;
if (f->f_locals == NULL) {
PyErr_Format(PyExc_SystemError,
"no locals found when setting up annotations");
goto error;
}
/* check if __annotations__ in locals()... */
if (PyDict_CheckExact(f->f_locals)) {
ann_dict = _PyDict_GetItemId(f->f_locals,
&PyId___annotations__);
if (ann_dict == NULL) {
/* ...if not, create a new one */
ann_dict = PyDict_New();
if (ann_dict == NULL) {
goto error;
}
err = _PyDict_SetItemId(f->f_locals,
&PyId___annotations__, ann_dict);
Py_DECREF(ann_dict);
if (err != 0) {
goto error;
}
}
}
else {
/* do the same if locals() is not a dict */
PyObject *ann_str = _PyUnicode_FromId(&PyId___annotations__);
if (ann_str == NULL) {
goto error;
}
ann_dict = PyObject_GetItem(f->f_locals, ann_str);
if (ann_dict == NULL) {
if (!PyErr_ExceptionMatches(PyExc_KeyError)) {
goto error;
}
PyErr_Clear();
ann_dict = PyDict_New();
if (ann_dict == NULL) {
goto error;
}
err = PyObject_SetItem(f->f_locals, ann_str, ann_dict);
Py_DECREF(ann_dict);
if (err != 0) {
goto error;
}
}
else {
Py_DECREF(ann_dict);
}
}
DISPATCH();
}
TARGET(BUILD_CONST_KEY_MAP) {
Py_ssize_t i;
PyObject *map;
PyObject *keys = TOP();
if (!PyTuple_CheckExact(keys) ||
PyTuple_GET_SIZE(keys) != (Py_ssize_t)oparg) {
PyErr_SetString(PyExc_SystemError,
"bad BUILD_CONST_KEY_MAP keys argument");
goto error;
}
map = _PyDict_NewPresized((Py_ssize_t)oparg);
if (map == NULL) {
goto error;
}
for (i = oparg; i > 0; i--) {
int err;
PyObject *key = PyTuple_GET_ITEM(keys, oparg - i);
PyObject *value = PEEK(i + 1);
err = PyDict_SetItem(map, key, value);
if (err != 0) {
Py_DECREF(map);
goto error;
}
}
Py_DECREF(POP());
while (oparg--) {
Py_DECREF(POP());
}
PUSH(map);
DISPATCH();
}
TARGET(BUILD_MAP_UNPACK) {
Py_ssize_t i;
PyObject *sum = PyDict_New();
if (sum == NULL)
goto error;
for (i = oparg; i > 0; i--) {
PyObject *arg = PEEK(i);
if (PyDict_Update(sum, arg) < 0) {
if (PyErr_ExceptionMatches(PyExc_AttributeError)) {
PyErr_Format(PyExc_TypeError,
"'%.200s' object is not a mapping",
arg->ob_type->tp_name);
}
Py_DECREF(sum);
goto error;
}
}
while (oparg--)
Py_DECREF(POP());
PUSH(sum);
DISPATCH();
}
TARGET(BUILD_MAP_UNPACK_WITH_CALL) {
Py_ssize_t i;
PyObject *sum = PyDict_New();
if (sum == NULL)
goto error;
for (i = oparg; i > 0; i--) {
PyObject *arg = PEEK(i);
if (_PyDict_MergeEx(sum, arg, 2) < 0) {
PyObject *func = PEEK(2 + oparg);
if (PyErr_ExceptionMatches(PyExc_AttributeError)) {
PyErr_Format(PyExc_TypeError,
"%.200s%.200s argument after ** "
"must be a mapping, not %.200s",
PyEval_GetFuncName(func),
PyEval_GetFuncDesc(func),
arg->ob_type->tp_name);
}
else if (PyErr_ExceptionMatches(PyExc_KeyError)) {
PyObject *exc, *val, *tb;
PyErr_Fetch(&exc, &val, &tb);
if (val && PyTuple_Check(val) && PyTuple_GET_SIZE(val) == 1) {
PyObject *key = PyTuple_GET_ITEM(val, 0);
if (!PyUnicode_Check(key)) {
PyErr_Format(PyExc_TypeError,
"%.200s%.200s keywords must be strings",
PyEval_GetFuncName(func),
PyEval_GetFuncDesc(func));
} else {
PyErr_Format(PyExc_TypeError,
"%.200s%.200s got multiple "
"values for keyword argument '%U'",
PyEval_GetFuncName(func),
PyEval_GetFuncDesc(func),
key);
}
Py_XDECREF(exc);
Py_XDECREF(val);
Py_XDECREF(tb);
}
else {
PyErr_Restore(exc, val, tb);
}
}
Py_DECREF(sum);
goto error;
}
}
while (oparg--)
Py_DECREF(POP());
PUSH(sum);
DISPATCH();
}
TARGET(MAP_ADD) {
PyObject *key = TOP();
PyObject *value = SECOND();
PyObject *map;
int err;
STACKADJ(-2);
map = PEEK(oparg); /* dict */
assert(PyDict_CheckExact(map));
err = PyDict_SetItem(map, key, value); /* map[key] = value */
Py_DECREF(value);
Py_DECREF(key);
if (err != 0)
goto error;
PREDICT(JUMP_ABSOLUTE);
DISPATCH();
}
TARGET(LOAD_ATTR) {
PyObject *name = GETITEM(names, oparg);
PyObject *owner = TOP();
PyObject *res = PyObject_GetAttr(owner, name);
Py_DECREF(owner);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
TARGET(COMPARE_OP) {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = cmp_outcome(oparg, left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
PREDICT(POP_JUMP_IF_FALSE);
PREDICT(POP_JUMP_IF_TRUE);
DISPATCH();
}
TARGET(IMPORT_NAME) {
PyObject *name = GETITEM(names, oparg);
PyObject *fromlist = POP();
PyObject *level = TOP();
PyObject *res;
res = import_name(f, name, fromlist, level);
Py_DECREF(level);
Py_DECREF(fromlist);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
TARGET(IMPORT_STAR) {
PyObject *from = POP(), *locals;
int err;
if (PyFrame_FastToLocalsWithError(f) < 0)
goto error;
locals = f->f_locals;
if (locals == NULL) {
PyErr_SetString(PyExc_SystemError,
"no locals found during 'import *'");
goto error;
}
err = import_all_from(locals, from);
PyFrame_LocalsToFast(f, 0);
Py_DECREF(from);
if (err != 0)
goto error;
DISPATCH();
}
TARGET(IMPORT_FROM) {
PyObject *name = GETITEM(names, oparg);
PyObject *from = TOP();
PyObject *res;
res = import_from(from, name);
PUSH(res);
if (res == NULL)
goto error;
DISPATCH();
}
TARGET(JUMP_FORWARD) {
JUMPBY(oparg);
FAST_DISPATCH();
}
PREDICTED(POP_JUMP_IF_FALSE);
TARGET(POP_JUMP_IF_FALSE) {
PyObject *cond = POP();
int err;
if (cond == Py_True) {
Py_DECREF(cond);
FAST_DISPATCH();
}
if (cond == Py_False) {
Py_DECREF(cond);
JUMPTO(oparg);
FAST_DISPATCH();
}
err = PyObject_IsTrue(cond);
Py_DECREF(cond);
if (err > 0)
err = 0;
else if (err == 0)
JUMPTO(oparg);
else
goto error;
DISPATCH();
}
PREDICTED(POP_JUMP_IF_TRUE);
TARGET(POP_JUMP_IF_TRUE) {
PyObject *cond = POP();
int err;
if (cond == Py_False) {
Py_DECREF(cond);
FAST_DISPATCH();
}
if (cond == Py_True) {
Py_DECREF(cond);
JUMPTO(oparg);
FAST_DISPATCH();
}
err = PyObject_IsTrue(cond);
Py_DECREF(cond);
if (err > 0) {
err = 0;
JUMPTO(oparg);
}
else if (err == 0)
;
else
goto error;
DISPATCH();
}
TARGET(JUMP_IF_FALSE_OR_POP) {
PyObject *cond = TOP();
int err;
if (cond == Py_True) {
STACKADJ(-1);
Py_DECREF(cond);
FAST_DISPATCH();
}
if (cond == Py_False) {
JUMPTO(oparg);
FAST_DISPATCH();
}
err = PyObject_IsTrue(cond);
if (err > 0) {
STACKADJ(-1);
Py_DECREF(cond);
err = 0;
}
else if (err == 0)
JUMPTO(oparg);
else
goto error;
DISPATCH();
}
TARGET(JUMP_IF_TRUE_OR_POP) {
PyObject *cond = TOP();
int err;
if (cond == Py_False) {
STACKADJ(-1);
Py_DECREF(cond);
FAST_DISPATCH();
}
if (cond == Py_True) {
JUMPTO(oparg);
FAST_DISPATCH();
}
err = PyObject_IsTrue(cond);
if (err > 0) {
err = 0;
JUMPTO(oparg);
}
else if (err == 0) {
STACKADJ(-1);
Py_DECREF(cond);
}
else
goto error;
DISPATCH();
}
PREDICTED(JUMP_ABSOLUTE);
TARGET(JUMP_ABSOLUTE) {
JUMPTO(oparg);
#if FAST_LOOPS
/* Enabling this path speeds-up all while and for-loops by bypassing
the per-loop checks for signals. By default, this should be turned-off
because it prevents detection of a control-break in tight loops like
"while 1: pass". Compile with this option turned-on when you need
the speed-up and do not need break checking inside tight loops (ones
that contain only instructions ending with FAST_DISPATCH).
*/
FAST_DISPATCH();
#else
DISPATCH();
#endif
}
TARGET(GET_ITER) {
/* before: [obj]; after [getiter(obj)] */
PyObject *iterable = TOP();
PyObject *iter = PyObject_GetIter(iterable);
Py_DECREF(iterable);
SET_TOP(iter);
if (iter == NULL)
goto error;
PREDICT(FOR_ITER);
PREDICT(CALL_FUNCTION);
DISPATCH();
}
TARGET(GET_YIELD_FROM_ITER) {
/* before: [obj]; after [getiter(obj)] */
PyObject *iterable = TOP();
PyObject *iter;
if (PyCoro_CheckExact(iterable)) {
/* `iterable` is a coroutine */
if (!(co->co_flags & (CO_COROUTINE | CO_ITERABLE_COROUTINE))) {
/* and it is used in a 'yield from' expression of a
regular generator. */
Py_DECREF(iterable);
SET_TOP(NULL);
PyErr_SetString(PyExc_TypeError,
"cannot 'yield from' a coroutine object "
"in a non-coroutine generator");
goto error;
}
}
else if (!PyGen_CheckExact(iterable)) {
/* `iterable` is not a generator. */
iter = PyObject_GetIter(iterable);
Py_DECREF(iterable);
SET_TOP(iter);
if (iter == NULL)
goto error;
}
PREDICT(LOAD_CONST);
DISPATCH();
}
PREDICTED(FOR_ITER);
TARGET(FOR_ITER) {
/* before: [iter]; after: [iter, iter()] *or* [] */
PyObject *iter = TOP();
PyObject *next = (*iter->ob_type->tp_iternext)(iter);
if (next != NULL) {
PUSH(next);
PREDICT(STORE_FAST);
PREDICT(UNPACK_SEQUENCE);
DISPATCH();
}
if (PyErr_Occurred()) {
if (!PyErr_ExceptionMatches(PyExc_StopIteration))
goto error;
else if (tstate->c_tracefunc != NULL)
call_exc_trace(tstate->c_tracefunc, tstate->c_traceobj, tstate, f);
PyErr_Clear();
}
/* iterator ended normally */
STACKADJ(-1);
Py_DECREF(iter);
JUMPBY(oparg);
PREDICT(POP_BLOCK);
DISPATCH();
}
TARGET(BREAK_LOOP) {
why = WHY_BREAK;
goto fast_block_end;
}
TARGET(CONTINUE_LOOP) {
retval = PyLong_FromLong(oparg);
if (retval == NULL)
goto error;
why = WHY_CONTINUE;
goto fast_block_end;
}
TARGET(SETUP_LOOP)
TARGET(SETUP_EXCEPT)
TARGET(SETUP_FINALLY) {
/* NOTE: If you add any new block-setup opcodes that
are not try/except/finally handlers, you may need
to update the PyGen_NeedsFinalizing() function.
*/
PyFrame_BlockSetup(f, opcode, INSTR_OFFSET() + oparg,
STACK_LEVEL());
DISPATCH();
}
TARGET(BEFORE_ASYNC_WITH) {
_Py_IDENTIFIER(__aexit__);
_Py_IDENTIFIER(__aenter__);
PyObject *mgr = TOP();
PyObject *exit = special_lookup(mgr, &PyId___aexit__),
*enter;
PyObject *res;
if (exit == NULL)
goto error;
SET_TOP(exit);
enter = special_lookup(mgr, &PyId___aenter__);
Py_DECREF(mgr);
if (enter == NULL)
goto error;
res = _PyObject_CallNoArg(enter);
Py_DECREF(enter);
if (res == NULL)
goto error;
PUSH(res);
PREDICT(GET_AWAITABLE);
DISPATCH();
}
TARGET(SETUP_ASYNC_WITH) {
PyObject *res = POP();
/* Setup the finally block before pushing the result
of __aenter__ on the stack. */
PyFrame_BlockSetup(f, SETUP_FINALLY, INSTR_OFFSET() + oparg,
STACK_LEVEL());
PUSH(res);
DISPATCH();
}
TARGET(SETUP_WITH) {
_Py_IDENTIFIER(__exit__);
_Py_IDENTIFIER(__enter__);
PyObject *mgr = TOP();
PyObject *enter = special_lookup(mgr, &PyId___enter__), *exit;
PyObject *res;
if (enter == NULL)
goto error;
exit = special_lookup(mgr, &PyId___exit__);
if (exit == NULL) {
Py_DECREF(enter);
goto error;
}
SET_TOP(exit);
Py_DECREF(mgr);
res = _PyObject_CallNoArg(enter);
Py_DECREF(enter);
if (res == NULL)
goto error;
/* Setup the finally block before pushing the result
of __enter__ on the stack. */
PyFrame_BlockSetup(f, SETUP_FINALLY, INSTR_OFFSET() + oparg,
STACK_LEVEL());
PUSH(res);
DISPATCH();
}
TARGET(WITH_CLEANUP_START) {
/* At the top of the stack are 1-6 values indicating
how/why we entered the finally clause:
- TOP = None
- (TOP, SECOND) = (WHY_{RETURN,CONTINUE}), retval
- TOP = WHY_*; no retval below it
- (TOP, SECOND, THIRD) = exc_info()
(FOURTH, FITH, SIXTH) = previous exception for EXCEPT_HANDLER
Below them is EXIT, the context.__exit__ bound method.
In the last case, we must call
EXIT(TOP, SECOND, THIRD)
otherwise we must call
EXIT(None, None, None)
In the first three cases, we remove EXIT from the
stack, leaving the rest in the same order. In the
fourth case, we shift the bottom 3 values of the
stack down, and replace the empty spot with NULL.
In addition, if the stack represents an exception,
*and* the function call returns a 'true' value, we
push WHY_SILENCED onto the stack. END_FINALLY will
then not re-raise the exception. (But non-local
gotos should still be resumed.)
*/
PyObject* stack[3];
PyObject *exit_func;
PyObject *exc, *val, *tb, *res;
val = tb = Py_None;
exc = TOP();
if (exc == Py_None) {
(void)POP();
exit_func = TOP();
SET_TOP(exc);
}
else if (PyLong_Check(exc)) {
STACKADJ(-1);
switch (PyLong_AsLong(exc)) {
case WHY_RETURN:
case WHY_CONTINUE:
/* Retval in TOP. */
exit_func = SECOND();
SET_SECOND(TOP());
SET_TOP(exc);
break;
default:
exit_func = TOP();
SET_TOP(exc);
break;
}
exc = Py_None;
}
else {
PyObject *tp2, *exc2, *tb2;
PyTryBlock *block;
val = SECOND();
tb = THIRD();
tp2 = FOURTH();
exc2 = PEEK(5);
tb2 = PEEK(6);
exit_func = PEEK(7);
SET_VALUE(7, tb2);
SET_VALUE(6, exc2);
SET_VALUE(5, tp2);
/* UNWIND_EXCEPT_HANDLER will pop this off. */
SET_FOURTH(NULL);
/* We just shifted the stack down, so we have
to tell the except handler block that the
values are lower than it expects. */
block = &f->f_blockstack[f->f_iblock - 1];
assert(block->b_type == EXCEPT_HANDLER);
block->b_level--;
}
stack[0] = exc;
stack[1] = val;
stack[2] = tb;
res = _PyObject_FastCall(exit_func, stack, 3);
Py_DECREF(exit_func);
if (res == NULL)
goto error;
Py_INCREF(exc); /* Duplicating the exception on the stack */
PUSH(exc);
PUSH(res);
PREDICT(WITH_CLEANUP_FINISH);
DISPATCH();
}
PREDICTED(WITH_CLEANUP_FINISH);
TARGET(WITH_CLEANUP_FINISH) {
PyObject *res = POP();
PyObject *exc = POP();
int err;
if (exc != Py_None)
err = PyObject_IsTrue(res);
else
err = 0;
Py_DECREF(res);
Py_DECREF(exc);
if (err < 0)
goto error;
else if (err > 0) {
err = 0;
/* There was an exception and a True return */
PUSH(PyLong_FromLong((long) WHY_SILENCED));
}
PREDICT(END_FINALLY);
DISPATCH();
}
TARGET(LOAD_METHOD) {
/* Designed to work in tamdem with CALL_METHOD. */
PyObject *name = GETITEM(names, oparg);
PyObject *obj = TOP();
PyObject *meth = NULL;
int meth_found = _PyObject_GetMethod(obj, name, &meth);
if (meth == NULL) {
/* Most likely attribute wasn't found. */
goto error;
}
if (meth_found) {
/* We can bypass temporary bound method object.
meth is unbound method and obj is self.
meth | self | arg1 | ... | argN
*/
SET_TOP(meth);
PUSH(obj); // self
}
else {
/* meth is not an unbound method (but a regular attr, or
something was returned by a descriptor protocol). Set
the second element of the stack to NULL, to signal
CALL_METHOD that it's not a method call.
NULL | meth | arg1 | ... | argN
*/
SET_TOP(NULL);
Py_DECREF(obj);
PUSH(meth);
}
DISPATCH();
}
TARGET(CALL_METHOD) {
/* Designed to work in tamdem with LOAD_METHOD. */
PyObject **sp, *res, *meth;
sp = stack_pointer;
meth = PEEK(oparg + 2);
if (meth == NULL) {
/* `meth` is NULL when LOAD_METHOD thinks that it's not
a method call.
Stack layout:
... | NULL | callable | arg1 | ... | argN
^- TOP()
^- (-oparg)
^- (-oparg-1)
^- (-oparg-2)
`callable` will be POPed by call_funtion.
NULL will will be POPed manually later.
*/
res = call_function(&sp, oparg, NULL);
stack_pointer = sp;
(void)POP(); /* POP the NULL. */
}
else {
/* This is a method call. Stack layout:
... | method | self | arg1 | ... | argN
^- TOP()
^- (-oparg)
^- (-oparg-1)
^- (-oparg-2)
`self` and `method` will be POPed by call_function.
We'll be passing `oparg + 1` to call_function, to
make it accept the `self` as a first argument.
*/
res = call_function(&sp, oparg + 1, NULL);
stack_pointer = sp;
}
PUSH(res);
if (res == NULL)
goto error;
DISPATCH();
}
PREDICTED(CALL_FUNCTION);
TARGET(CALL_FUNCTION) {
PyObject **sp, *res;
sp = stack_pointer;
res = call_function(&sp, oparg, NULL);
stack_pointer = sp;
PUSH(res);
if (res == NULL) {
goto error;
}
DISPATCH();
}
TARGET(CALL_FUNCTION_KW) {
PyObject **sp, *res, *names;
names = POP();
assert(PyTuple_CheckExact(names) && PyTuple_GET_SIZE(names) <= oparg);
sp = stack_pointer;
res = call_function(&sp, oparg, names);
stack_pointer = sp;
PUSH(res);
Py_DECREF(names);
if (res == NULL) {
goto error;
}
DISPATCH();
}
TARGET(CALL_FUNCTION_EX) {
PyObject *func, *callargs, *kwargs = NULL, *result;
if (oparg & 0x01) {
kwargs = POP();
if (!PyDict_CheckExact(kwargs)) {
PyObject *d = PyDict_New();
if (d == NULL)
goto error;
if (PyDict_Update(d, kwargs) != 0) {
Py_DECREF(d);
/* PyDict_Update raises attribute
* error (percolated from an attempt
* to get 'keys' attribute) instead of
* a type error if its second argument
* is not a mapping.
*/
if (PyErr_ExceptionMatches(PyExc_AttributeError)) {
func = SECOND();
PyErr_Format(PyExc_TypeError,
"%.200s%.200s argument after ** "
"must be a mapping, not %.200s",
PyEval_GetFuncName(func),
PyEval_GetFuncDesc(func),
kwargs->ob_type->tp_name);
}
Py_DECREF(kwargs);
goto error;
}
Py_DECREF(kwargs);
kwargs = d;
}
assert(PyDict_CheckExact(kwargs));
}
callargs = POP();
func = TOP();
if (!PyTuple_CheckExact(callargs)) {
if (Py_TYPE(callargs)->tp_iter == NULL &&
!PySequence_Check(callargs)) {
PyErr_Format(PyExc_TypeError,
"%.200s%.200s argument after * "
"must be an iterable, not %.200s",
PyEval_GetFuncName(func),
PyEval_GetFuncDesc(func),
callargs->ob_type->tp_name);
Py_DECREF(callargs);
goto error;
}
Py_SETREF(callargs, PySequence_Tuple(callargs));
if (callargs == NULL) {
goto error;
}
}
assert(PyTuple_CheckExact(callargs));
result = do_call_core(func, callargs, kwargs);
Py_DECREF(func);
Py_DECREF(callargs);
Py_XDECREF(kwargs);
SET_TOP(result);
if (result == NULL) {
goto error;
}
DISPATCH();
}
TARGET(MAKE_FUNCTION) {
PyObject *qualname = POP();
PyObject *codeobj = POP();
PyFunctionObject *func = (PyFunctionObject *)
PyFunction_NewWithQualName(codeobj, f->f_globals, qualname);
Py_DECREF(codeobj);
Py_DECREF(qualname);
if (func == NULL) {
goto error;
}
if (oparg & 0x08) {
assert(PyTuple_CheckExact(TOP()));
func ->func_closure = POP();
}
if (oparg & 0x04) {
assert(PyDict_CheckExact(TOP()));
func->func_annotations = POP();
}
if (oparg & 0x02) {
assert(PyDict_CheckExact(TOP()));
func->func_kwdefaults = POP();
}
if (oparg & 0x01) {
assert(PyTuple_CheckExact(TOP()));
func->func_defaults = POP();
}
PUSH((PyObject *)func);
DISPATCH();
}
TARGET(BUILD_SLICE) {
PyObject *start, *stop, *step, *slice;
if (oparg == 3)
step = POP();
else
step = NULL;
stop = POP();
start = TOP();
slice = PySlice_New(start, stop, step);
Py_DECREF(start);
Py_DECREF(stop);
Py_XDECREF(step);
SET_TOP(slice);
if (slice == NULL)
goto error;
DISPATCH();
}
TARGET(FORMAT_VALUE) {
/* Handles f-string value formatting. */
PyObject *result;
PyObject *fmt_spec;
PyObject *value;
PyObject *(*conv_fn)(PyObject *);
int which_conversion = oparg & FVC_MASK;
int have_fmt_spec = (oparg & FVS_MASK) == FVS_HAVE_SPEC;
fmt_spec = have_fmt_spec ? POP() : NULL;
value = POP();
/* See if any conversion is specified. */
switch (which_conversion) {
case FVC_STR: conv_fn = PyObject_Str; break;
case FVC_REPR: conv_fn = PyObject_Repr; break;
case FVC_ASCII: conv_fn = PyObject_ASCII; break;
/* Must be 0 (meaning no conversion), since only four
values are allowed by (oparg & FVC_MASK). */
default: conv_fn = NULL; break;
}
/* If there's a conversion function, call it and replace
value with that result. Otherwise, just use value,
without conversion. */
if (conv_fn != NULL) {
result = conv_fn(value);
Py_DECREF(value);
if (result == NULL) {
Py_XDECREF(fmt_spec);
goto error;
}
value = result;
}
/* If value is a unicode object, and there's no fmt_spec,
then we know the result of format(value) is value
itself. In that case, skip calling format(). I plan to
move this optimization in to PyObject_Format()
itself. */
if (PyUnicode_CheckExact(value) && fmt_spec == NULL) {
/* Do nothing, just transfer ownership to result. */
result = value;
} else {
/* Actually call format(). */
result = PyObject_Format(value, fmt_spec);
Py_DECREF(value);
Py_XDECREF(fmt_spec);
if (result == NULL) {
goto error;
}
}
PUSH(result);
DISPATCH();
}
TARGET(EXTENDED_ARG) {
int oldoparg = oparg;
NEXTOPARG();
oparg |= oldoparg << 8;
goto dispatch_opcode;
}
#if USE_COMPUTED_GOTOS
_unknown_opcode:
#endif
default:
fprintf(stderr,
"XXX lineno: %d, opcode: %d\n",
PyFrame_GetLineNumber(f),
opcode);
PyErr_SetString(PyExc_SystemError, "unknown opcode");
goto error;
#ifdef CASE_TOO_BIG
}
#endif
} /* switch */
/* This should never be reached. Every opcode should end with DISPATCH()
or goto error. */
assert(0);
error:
assert(why == WHY_NOT);
why = WHY_EXCEPTION;
/* Double-check exception status. */
#ifdef NDEBUG
if (!PyErr_Occurred())
PyErr_SetString(PyExc_SystemError,
"error return without exception set");
#else
assert(PyErr_Occurred());
#endif
/* Log traceback info. */
PyTraceBack_Here(f);
if (tstate->c_tracefunc != NULL)
call_exc_trace(tstate->c_tracefunc, tstate->c_traceobj,
tstate, f);
fast_block_end:
assert(why != WHY_NOT);
/* Unwind stacks if a (pseudo) exception occurred */
while (why != WHY_NOT && f->f_iblock > 0) {
/* Peek at the current block. */
PyTryBlock *b = &f->f_blockstack[f->f_iblock - 1];
assert(why != WHY_YIELD);
if (b->b_type == SETUP_LOOP && why == WHY_CONTINUE) {
why = WHY_NOT;
JUMPTO(PyLong_AS_LONG(retval));
Py_DECREF(retval);
break;
}
/* Now we have to pop the block. */
f->f_iblock--;
if (b->b_type == EXCEPT_HANDLER) {
UNWIND_EXCEPT_HANDLER(b);
continue;
}
UNWIND_BLOCK(b);
if (b->b_type == SETUP_LOOP && why == WHY_BREAK) {
why = WHY_NOT;
JUMPTO(b->b_handler);
break;
}
if (why == WHY_EXCEPTION && (b->b_type == SETUP_EXCEPT
|| b->b_type == SETUP_FINALLY)) {
PyObject *exc, *val, *tb;
int handler = b->b_handler;
/* Beware, this invalidates all b->b_* fields */
PyFrame_BlockSetup(f, EXCEPT_HANDLER, -1, STACK_LEVEL());
PUSH(tstate->exc_traceback);
PUSH(tstate->exc_value);
if (tstate->exc_type != NULL) {
PUSH(tstate->exc_type);
}
else {
Py_INCREF(Py_None);
PUSH(Py_None);
}
PyErr_Fetch(&exc, &val, &tb);
/* Make the raw exception data
available to the handler,
so a program can emulate the
Python main loop. */
PyErr_NormalizeException(
&exc, &val, &tb);
if (tb != NULL)
PyException_SetTraceback(val, tb);
else
PyException_SetTraceback(val, Py_None);
Py_INCREF(exc);
tstate->exc_type = exc;
Py_INCREF(val);
tstate->exc_value = val;
tstate->exc_traceback = tb;
if (tb == NULL)
tb = Py_None;
Py_INCREF(tb);
PUSH(tb);
PUSH(val);
PUSH(exc);
why = WHY_NOT;
JUMPTO(handler);
break;
}
if (b->b_type == SETUP_FINALLY) {
if (why & (WHY_RETURN | WHY_CONTINUE))
PUSH(retval);
PUSH(PyLong_FromLong((long)why));
why = WHY_NOT;
JUMPTO(b->b_handler);
break;
}
} /* unwind stack */
/* End the loop if we still have an error (or return) */
if (why != WHY_NOT)
break;
assert(!PyErr_Occurred());
} /* main loop */
assert(why != WHY_YIELD);
/* Pop remaining stack entries. */
while (!EMPTY()) {
PyObject *o = POP();
Py_XDECREF(o);
}
if (why != WHY_RETURN)
retval = NULL;
assert((retval != NULL) ^ (PyErr_Occurred() != NULL));
fast_yield:
if (co->co_flags & (CO_GENERATOR | CO_COROUTINE | CO_ASYNC_GENERATOR)) {
/* The purpose of this block is to put aside the generator's exception
state and restore that of the calling frame. If the current
exception state is from the caller, we clear the exception values
on the generator frame, so they are not swapped back in latter. The
origin of the current exception state is determined by checking for
except handler blocks, which we must be in iff a new exception
state came into existence in this frame. (An uncaught exception
would have why == WHY_EXCEPTION, and we wouldn't be here). */
int i;
for (i = 0; i < f->f_iblock; i++) {
if (f->f_blockstack[i].b_type == EXCEPT_HANDLER) {
break;
}
}
if (i == f->f_iblock)
/* We did not create this exception. */
restore_and_clear_exc_state(tstate, f);
else
swap_exc_state(tstate, f);
}
if (tstate->use_tracing) {
if (tstate->c_tracefunc) {
if (why == WHY_RETURN || why == WHY_YIELD) {
if (call_trace(tstate->c_tracefunc, tstate->c_traceobj,
tstate, f,
PyTrace_RETURN, retval)) {
Py_CLEAR(retval);
why = WHY_EXCEPTION;
}
}
else if (why == WHY_EXCEPTION) {
call_trace_protected(tstate->c_tracefunc, tstate->c_traceobj,
tstate, f,
PyTrace_RETURN, NULL);
}
}
if (tstate->c_profilefunc) {
if (why == WHY_EXCEPTION)
call_trace_protected(tstate->c_profilefunc,
tstate->c_profileobj,
tstate, f,
PyTrace_RETURN, NULL);
else if (call_trace(tstate->c_profilefunc, tstate->c_profileobj,
tstate, f,
PyTrace_RETURN, retval)) {
Py_CLEAR(retval);
/* why = WHY_EXCEPTION; */
}
}
}
/* pop frame */
exit_eval_frame:
if (PyDTrace_FUNCTION_RETURN_ENABLED())
dtrace_function_return(f);
Py_LeaveRecursiveCall();
f->f_executing = 0;
tstate->frame = f->f_back;
return _Py_CheckFunctionResult(NULL, retval, "PyEval_EvalFrameEx");
}
static void
format_missing(const char *kind, PyCodeObject *co, PyObject *names)
{
int err;
Py_ssize_t len = PyList_GET_SIZE(names);
PyObject *name_str, *comma, *tail, *tmp;
assert(PyList_CheckExact(names));
assert(len >= 1);
/* Deal with the joys of natural language. */
switch (len) {
case 1:
name_str = PyList_GET_ITEM(names, 0);
Py_INCREF(name_str);
break;
case 2:
name_str = PyUnicode_FromFormat("%U and %U",
PyList_GET_ITEM(names, len - 2),
PyList_GET_ITEM(names, len - 1));
break;
default:
tail = PyUnicode_FromFormat(", %U, and %U",
PyList_GET_ITEM(names, len - 2),
PyList_GET_ITEM(names, len - 1));
if (tail == NULL)
return;
/* Chop off the last two objects in the list. This shouldn't actually
fail, but we can't be too careful. */
err = PyList_SetSlice(names, len - 2, len, NULL);
if (err == -1) {
Py_DECREF(tail);
return;
}
/* Stitch everything up into a nice comma-separated list. */
comma = PyUnicode_FromString(", ");
if (comma == NULL) {
Py_DECREF(tail);
return;
}
tmp = PyUnicode_Join(comma, names);
Py_DECREF(comma);
if (tmp == NULL) {
Py_DECREF(tail);
return;
}
name_str = PyUnicode_Concat(tmp, tail);
Py_DECREF(tmp);
Py_DECREF(tail);
break;
}
if (name_str == NULL)
return;
PyErr_Format(PyExc_TypeError,
"%U() missing %i required %s argument%s: %U",
co->co_name,
len,
kind,
len == 1 ? "" : "s",
name_str);
Py_DECREF(name_str);
}
static void
missing_arguments(PyCodeObject *co, Py_ssize_t missing, Py_ssize_t defcount,
PyObject **fastlocals)
{
Py_ssize_t i, j = 0;
Py_ssize_t start, end;
int positional = (defcount != -1);
const char *kind = positional ? "positional" : "keyword-only";
PyObject *missing_names;
/* Compute the names of the arguments that are missing. */
missing_names = PyList_New(missing);
if (missing_names == NULL)
return;
if (positional) {
start = 0;
end = co->co_argcount - defcount;
}
else {
start = co->co_argcount;
end = start + co->co_kwonlyargcount;
}
for (i = start; i < end; i++) {
if (GETLOCAL(i) == NULL) {
PyObject *raw = PyTuple_GET_ITEM(co->co_varnames, i);
PyObject *name = PyObject_Repr(raw);
if (name == NULL) {
Py_DECREF(missing_names);
return;
}
PyList_SET_ITEM(missing_names, j++, name);
}
}
assert(j == missing);
format_missing(kind, co, missing_names);
Py_DECREF(missing_names);
}
static void
too_many_positional(PyCodeObject *co, Py_ssize_t given, Py_ssize_t defcount,
PyObject **fastlocals)
{
int plural;
Py_ssize_t kwonly_given = 0;
Py_ssize_t i;
PyObject *sig, *kwonly_sig;
Py_ssize_t co_argcount = co->co_argcount;
assert((co->co_flags & CO_VARARGS) == 0);
/* Count missing keyword-only args. */
for (i = co_argcount; i < co_argcount + co->co_kwonlyargcount; i++) {
if (GETLOCAL(i) != NULL) {
kwonly_given++;
}
}
if (defcount) {
Py_ssize_t atleast = co_argcount - defcount;
plural = 1;
sig = PyUnicode_FromFormat("from %zd to %zd", atleast, co_argcount);
}
else {
plural = (co_argcount != 1);
sig = PyUnicode_FromFormat("%zd", co_argcount);
}
if (sig == NULL)
return;
if (kwonly_given) {
const char *format = " positional argument%s (and %zd keyword-only argument%s)";
kwonly_sig = PyUnicode_FromFormat(format,
given != 1 ? "s" : "",
kwonly_given,
kwonly_given != 1 ? "s" : "");
if (kwonly_sig == NULL) {
Py_DECREF(sig);
return;
}
}
else {
/* This will not fail. */
kwonly_sig = PyUnicode_FromString("");
assert(kwonly_sig != NULL);
}
PyErr_Format(PyExc_TypeError,
"%U() takes %U positional argument%s but %zd%U %s given",
co->co_name,
sig,
plural ? "s" : "",
given,
kwonly_sig,
given == 1 && !kwonly_given ? "was" : "were");
Py_DECREF(sig);
Py_DECREF(kwonly_sig);
}
/* This is gonna seem *real weird*, but if you put some other code between
PyEval_EvalFrame() and PyEval_EvalCodeEx() you will need to adjust
the test in the if statements in Misc/gdbinit (pystack and pystackv). */
static PyObject *
_PyEval_EvalCodeWithName(PyObject *_co, PyObject *globals, PyObject *locals,
PyObject **args, Py_ssize_t argcount,
PyObject **kwnames, PyObject **kwargs,
Py_ssize_t kwcount, int kwstep,
PyObject **defs, Py_ssize_t defcount,
PyObject *kwdefs, PyObject *closure,
PyObject *name, PyObject *qualname)
{
PyCodeObject* co = (PyCodeObject*)_co;
PyFrameObject *f;
PyObject *retval = NULL;
PyObject **fastlocals, **freevars;
PyThreadState *tstate;
PyObject *x, *u;
const Py_ssize_t total_args = co->co_argcount + co->co_kwonlyargcount;
Py_ssize_t i, n;
PyObject *kwdict;
if (globals == NULL) {
PyErr_SetString(PyExc_SystemError,
"PyEval_EvalCodeEx: NULL globals");
return NULL;
}
/* Create the frame */
tstate = PyThreadState_GET();
assert(tstate != NULL);
f = _PyFrame_New_NoTrack(tstate, co, globals, locals);
if (f == NULL) {
return NULL;
}
fastlocals = f->f_localsplus;
freevars = f->f_localsplus + co->co_nlocals;
/* Create a dictionary for keyword parameters (**kwags) */
if (co->co_flags & CO_VARKEYWORDS) {
kwdict = PyDict_New();
if (kwdict == NULL)
goto fail;
i = total_args;
if (co->co_flags & CO_VARARGS) {
i++;
}
SETLOCAL(i, kwdict);
}
else {
kwdict = NULL;
}
/* Copy positional arguments into local variables */
if (argcount > co->co_argcount) {
n = co->co_argcount;
}
else {
n = argcount;
}
for (i = 0; i < n; i++) {
x = args[i];
Py_INCREF(x);
SETLOCAL(i, x);
}
/* Pack other positional arguments into the *args argument */
if (co->co_flags & CO_VARARGS) {
u = PyTuple_New(argcount - n);
if (u == NULL) {
goto fail;
}
SETLOCAL(total_args, u);
for (i = n; i < argcount; i++) {
x = args[i];
Py_INCREF(x);
PyTuple_SET_ITEM(u, i-n, x);
}
}
/* Handle keyword arguments passed as two strided arrays */
kwcount *= kwstep;
for (i = 0; i < kwcount; i += kwstep) {
PyObject **co_varnames;
PyObject *keyword = kwnames[i];
PyObject *value = kwargs[i];
Py_ssize_t j;
if (keyword == NULL || !PyUnicode_Check(keyword)) {
PyErr_Format(PyExc_TypeError,
"%U() keywords must be strings",
co->co_name);
goto fail;
}
/* Speed hack: do raw pointer compares. As names are
normally interned this should almost always hit. */
co_varnames = ((PyTupleObject *)(co->co_varnames))->ob_item;
for (j = 0; j < total_args; j++) {
PyObject *name = co_varnames[j];
if (name == keyword) {
goto kw_found;
}
}