-
-
Notifications
You must be signed in to change notification settings - Fork 1.8k
/
Copy pathstatistics.pyi
69 lines (63 loc) · 3.03 KB
/
statistics.pyi
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Stubs for statistics
from decimal import Decimal
from fractions import Fraction
import sys
from typing import Any, Iterable, List, Optional, SupportsFloat, Type, TypeVar, Union, Protocol
_T = TypeVar("_T")
# Most functions in this module accept homogeneous collections of one of these types
_Number = TypeVar('_Number', float, Decimal, Fraction)
# Used in median_high, median_low
class _Sortable(Protocol):
def __lt__(self, other) -> bool: ...
_SortableT = TypeVar("_SortableT", bound=_Sortable)
class StatisticsError(ValueError): ...
if sys.version_info >= (3, 8):
def fmean(data: Iterable[SupportsFloat]) -> float: ...
def geometric_mean(data: Iterable[SupportsFloat]) -> float: ...
def mean(data: Iterable[_Number]) -> _Number: ...
if sys.version_info >= (3, 6):
def harmonic_mean(data: Iterable[_Number]) -> _Number: ...
def median(data: Iterable[_Number]) -> _Number: ...
def median_low(data: Iterable[_SortableT]) -> _SortableT: ...
def median_high(data: Iterable[_SortableT]) -> _SortableT: ...
def median_grouped(data: Iterable[_Number], interval: _Number = ...) -> _Number: ...
def mode(data: Iterable[_Number]) -> _Number: ...
if sys.version_info >= (3, 8):
def multimode(data: Iterable[_T]) -> List[_T]: ...
def pstdev(data: Iterable[_Number], mu: Optional[_Number] = ...) -> _Number: ...
def pvariance(data: Iterable[_Number], mu: Optional[_Number] = ...) -> _Number: ...
if sys.version_info >= (3, 8):
def quantiles(data: Iterable[_Number], *, n: int = ..., method: str = ...) -> List[_Number]: ...
def stdev(data: Iterable[_Number], xbar: Optional[_Number] = ...) -> _Number: ...
def variance(data: Iterable[_Number], xbar: Optional[_Number] = ...) -> _Number: ...
if sys.version_info >= (3, 8):
class NormalDist:
def __init__(self, mu: float = ..., sigma: float = ...) -> None: ...
@property
def mean(self) -> float: ...
@property
def median(self) -> float: ...
@property
def mode(self) -> float: ...
@property
def stdev(self) -> float: ...
@property
def variance(self) -> float: ...
@classmethod
def from_samples(cls: Type[_T], data: Iterable[SupportsFloat]) -> _T: ...
def samples(self, n: int, *, seed: Optional[Any] = ...) -> List[float]: ...
def pdf(self, x: float) -> float: ...
def cdf(self, x: float) -> float: ...
def inv_cdf(self, p: float) -> float: ...
def overlap(self, other: NormalDist) -> float: ...
def quantiles(self, n: int = ...) -> List[float]: ...
def __add__(self, x2: Union[float, NormalDist]) -> NormalDist: ...
def __sub__(self, x2: Union[float, NormalDist]) -> NormalDist: ...
def __mul__(self, x2: float) -> NormalDist: ...
def __truediv__(self, x2: float) -> NormalDist: ...
def __pos__(self) -> NormalDist: ...
def __neg__(self) -> NormalDist: ...
__radd__ = __add__
def __rsub__(self, x2: Union[float, NormalDist]) -> NormalDist: ...
__rmul__ = __mul__
def __hash__(self) -> int: ...