Skip to content

rashindrie/DIPA

Repository files navigation

Discriminative Sample-Guided and Parameter-Efficient Feature Space Adaptation for Cross-domain Few-Shot Learning

Discriminative Sample-Guided and Parameter-Efficient Feature Space Adaptation for Cross-Domain Few-Shot Learning,
Rashindrie Perera, Saman Halgamuge,
CVPR 2024 (arXiv 2403.04492)

Pre-trained model checkpoints

We release following pre-trained checkpoints using Masked Image Modelling (MIM) for reproducibility.

  1. Pre-trained on eight datasets: MDL checkpoint
  2. Pre-trained only on ImageNet-train set: SDL checkpoint

Additionally, the SDL-E checkpoints which were already available and used in our work can be accessed via below links:

  1. MIM Pre-trained on ImageNet-full set: SDL-E MIM checkpoint.
  2. DINO Pre-trained on ImageNet-full set: SDL-E DINO checkpoint.

Prerequisites

Please download and install Pytorch 1.9.0 and TensorFlow 2.6.0. This code was tested on Python 3.8.6 and CUDA 11.1.1.

pip install -r requirements.txt

Datasets

We utilize the Meta-Dataset for our main results. Instructions for downloading and pre-processing Meta-Dataset can be found here. We provide a dataset class for Meta-Dataset to be used during pre-training under the datasets folder. We also provide the label files created for MIM pre-training on Meta-Dataset here: label_folder.

Pre-training

We mainly follow the hyperparameters provided for pre-training using MIM while additionally following the author's recommendations to set teacher patch temperature to 0.04 instead of the default 0.07 provided in the source code.


export NCCL_SOCKET_IFNAME="bond0.3027,p1p1.3027"
export NCCL_IB_HCA=mlx5_bond_0,mlx5_0
export NCCL_IB_GID_INDEX=7

export MASTER_ADDR=127.0.0.1
export MASTER_PORT=12345
export WORLD_SIZE=4

CHECKPOINT_DIR='./output_folder' # define path here

python -m torch.distributed.launch --use_env --nproc_per_node $WORLD_SIZE main_pretrain.py  \
  --dataset 'meta-dataset' \
  --data_path ${PATH_TO_META_DATASET_FOLDER} \
  --label_path ${PATH_TO_LABEL_FOLDER} \
  --output_dir ${CHECKPOINT_DIR} \
  --arch vit_small \
  --norm_last_layer false --use_fp16 True \
  --image_size 224 --local_crops_size 96 --patch_size 16 \
  --batch_size_per_gpu 128 \
  --epochs 800 \
  --shared_head true \
  --out_dim 8192 \
  --local_crops_number 10 \
  --global_crops_scale 0.25 1 \
  --local_crops_scale 0.05 0.25 \
  --pred_ratio 0 0.3 \
  --pred_ratio_var 0 0.2 \
  --teacher_temp 0.04 --teacher_patch_temp 0.04 --warmup_teacher_temp_epochs 30 --warmup_epochs 10 \

To pre-train an MDL backbone set --dataset meta-dataset else, to pre-train a SDL backbone set --dataset imagenet. Default choice is meta-dataset.

Meta-Testing

Meta-Dataset

Place/run the below code snippet which is required for using the MetaDataset readers, before running the evaluation scripts.

ulimit -n 50000

export META_DATASET_ROOT='/data/gpfs/projects/punim1193/few-shot-experiments/simple-cnaps/meta-dataset/'
export META_DATASET_ROOT='/data/gpfs/projects/punim1193/public_datasets/meta-dataset/'

export DATASRC='/data/gpfs/projects/punim1193/public_datasets/meta-dataset/data'
export SPLITS='/data/gpfs/projects/punim1193/public_datasets/meta-dataset/splits'
export RECORDS='/data/gpfs/projects/punim1193/public_datasets/meta-dataset/processed_data'

Evaluation:

CUDA_VISIBLE_DEVICES=0 python -u test_extractor.py \
    --pretrained_setting 'MDL' --test_type 'standard' \
    --out_dir ${RESULTS_PATH} --checkpoint_path ${PATH_TO_CHECKPOINT} 

Ensure that checkpoint_path points to the pre-trained checkpoint and out_dir points to the results folder in which you need to save evalution results.

To reproduce the N-way-K-shot tasks results presented in main text, set the test_type as standard:

--test_type 'standard'

To reproduce the varying-way-5-shot results in main text, set test_type as 5shot:

--test_type '5shot'

For running evaluation on an MDL pre-trained checkpoint, set pretrained_setting as MDL.

--pretrained_setting 'MDL' 

Otherwise, use SDL or SDL_E for running evaluation on other settings.

--pretrained_setting 'SDL' or --pretrained_setting 'SDL_E' 

Additional analysis on CIFAR-FS and mini-ImageNet

Datasets

We utilize CIFAR-FS, and Mini-ImageNet for additional evaluations. Please refer our Supplementary material for results from the additional evaluations.

  • CIFAR-FS can be downloaded using the command:
wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1Lq2USoQmbFgCFJlGx3huFSfjqwtxMCL8' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1Lq2USoQmbFgCFJlGx3huFSfjqwtxMCL8" -O cifar_fs.tar && rm -rf /tmp/cookies.txt

tar -xvf cifar_fs.tar cifar_fs/
  • Mini-ImageNet can be downloaded here.
tar -xvf MiniImagenet.tar.gz miniimagenet_224/

We also provide dataset classes for above datasets under the datasets folder.

Meta-Testing

CUDA_VISIBLE_DEVICES=0 python -u test_extractor_others.py \
    --n_way ${N_WAY} --k_shot ${K_SHOT} --dataset ${DATASET_NAME} \
    --checkpoint_path ${PATH_TO_CHECKPOINT} --data_path ${DATASET_PATH} --out_dir ${RESULTS_PATH} 

Set ${DATASET_NAME} as cifar-fs or as mini_imaget for CIFAR-FS and mini-ImageNet datasets, respectively. Here, the convention is to evaluate 5-way-5-shot or 5-way-1-shot. Define N_WAY, and K_SHOT according to the specific task you need to evaluate.

For example, for evaluating the 5-way-5-shot setting for cifar-fs dataset:

CUDA_VISIBLE_DEVICES=0 python -u test_extractor_others.py \
    --n_way 5 --k_shot 5 --dataset cifar_fs \
    --checkpoint_path ${PATH_TO_CHECKPOINT} --data_path ${DATASET_PATH} --out_dir ${RESULTS_PATH} 

Citation

If you find our project helpful, please consider to cite our paper:

@misc{perera2024discriminative,
      title={Discriminative Sample-Guided and Parameter-Efficient Feature Space Adaptation for Cross-Domain Few-Shot Learning}, 
      author={Rashindrie Perera and Saman Halgamuge},
      year={2024},
      eprint={2403.04492},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

About

Discriminative Sample-Guided and Parameter-Efficient Feature Space Adaptation for Cross-domain Few-Shot Learning - CVPR 2024

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published