Skip to content

Latest commit

 

History

History
216 lines (152 loc) · 7.62 KB

using-ray-with-tensorflow.rst

File metadata and controls

216 lines (152 loc) · 7.62 KB

Best Practices: Ray with Tensorflow

This document describes best practices for using the Ray core APIs with TensorFlow. Ray also provides higher-level utilities for working with Tensorflow, such as distributed training APIs (training tensorflow example), Tune for hyperparameter search (/tune/examples/tf_mnist_example), RLlib for reinforcement learning (RLlib tensorflow example).

Feel free to contribute if you think this document is missing anything.

Common Issues: Pickling

One common issue with TensorFlow2.0 is a pickling error like the following:

File "/home/***/venv/lib/python3.6/site-packages/ray/actor.py", line 322, in remote
  return self._remote(args=args, kwargs=kwargs)
File "/home/***/venv/lib/python3.6/site-packages/ray/actor.py", line 405, in _remote
  self._modified_class, self._actor_method_names)
File "/home/***/venv/lib/python3.6/site-packages/ray/function_manager.py", line 578, in export_actor_class
  "class": pickle.dumps(Class),
File "/home/***/venv/lib/python3.6/site-packages/ray/cloudpickle/cloudpickle.py", line 1123, in dumps
  cp.dump(obj)
File "/home/***/lib/python3.6/site-packages/ray/cloudpickle/cloudpickle.py", line 482, in dump
  return Pickler.dump(self, obj)
File "/usr/lib/python3.6/pickle.py", line 409, in dump
  self.save(obj)
File "/usr/lib/python3.6/pickle.py", line 476, in save
  f(self, obj) # Call unbound method with explicit self
File "/usr/lib/python3.6/pickle.py", line 751, in save_tuple
  save(element)
File "/usr/lib/python3.6/pickle.py", line 808, in _batch_appends
  save(tmp[0])
File "/usr/lib/python3.6/pickle.py", line 496, in save
  rv = reduce(self.proto)
TypeError: can't pickle _LazyLoader objects

To resolve this, you should move all instances of import tensorflow into the Ray actor or function, as follows:

def create_model():
    import tensorflow as tf
    ...

This issue is caused by side-effects of importing TensorFlow and setting global state.

Use Actors for Parallel Models

If you are training a deep network in the distributed setting, you may need to ship your deep network between processes (or machines). However, shipping the model is not always straightforward.

Tip

Avoid sending the Tensorflow model directly. A straightforward attempt to pickle a TensorFlow graph gives mixed results. Furthermore, creating a TensorFlow graph can take tens of seconds, and so serializing a graph and recreating it in another process will be inefficient.

It is recommended to replicate the same TensorFlow graph on each worker once at the beginning and then to ship only the weights between the workers.

Suppose we have a simple network definition (this one is modified from the TensorFlow documentation).

/ray-core/_examples/doc_code/tf_example.py

It is strongly recommended you create actors to handle this. To do this, first initialize ray and define an Actor class:

/ray-core/_examples/doc_code/tf_example.py

Then, we can instantiate this actor and train it on the separate process:

/ray-core/_examples/doc_code/tf_example.py

We can then use set_weights and get_weights to move the weights of the neural network around. This allows us to manipulate weights between different models running in parallel without shipping the actual TensorFlow graphs, which are much more complex Python objects.

/ray-core/_examples/doc_code/tf_example.py

Lower-level TF Utilities

Given a low-level TF definition:

import tensorflow as tf
import numpy as np

x_data = tf.placeholder(tf.float32, shape=[100])
y_data = tf.placeholder(tf.float32, shape=[100])

w = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = w * x_data + b

loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
grads = optimizer.compute_gradients(loss)
train = optimizer.apply_gradients(grads)

init = tf.global_variables_initializer()
sess = tf.Session()

To extract the weights and set the weights, you can use the following helper method.

import ray.experimental.tf_utils
variables = ray.experimental.tf_utils.TensorFlowVariables(loss, sess)

The TensorFlowVariables object provides methods for getting and setting the weights as well as collecting all of the variables in the model.

Now we can use these methods to extract the weights, and place them back in the network as follows.

sess = tf.Session()
# First initialize the weights.
sess.run(init)
# Get the weights
weights = variables.get_weights()  # Returns a dictionary of numpy arrays
# Set the weights
variables.set_weights(weights)

Note: If we were to set the weights using the assign method like below, each call to assign would add a node to the graph, and the graph would grow unmanageably large over time.

w.assign(np.zeros(1))  # This adds a node to the graph every time you call it.
b.assign(np.zeros(1))  # This adds a node to the graph every time you call it.

Note

This may not work with tf.Keras.

Troubleshooting

Note that TensorFlowVariables uses variable names to determine what variables to set when calling set_weights. One common issue arises when two networks are defined in the same TensorFlow graph. In this case, TensorFlow appends an underscore and integer to the names of variables to disambiguate them. This will cause TensorFlowVariables to fail. For example, if we have a class definiton Network with a TensorFlowVariables instance:

import ray
import tensorflow as tf

class Network(object):
    def __init__(self):
        a = tf.Variable(1)
        b = tf.Variable(1)
        c = tf.add(a, b)
        sess = tf.Session()
        init = tf.global_variables_initializer()
        sess.run(init)
        self.variables = ray.experimental.tf_utils.TensorFlowVariables(c, sess)

    def set_weights(self, weights):
        self.variables.set_weights(weights)

    def get_weights(self):
        return self.variables.get_weights()

and run the following code:

a = Network()
b = Network()
b.set_weights(a.get_weights())

the code would fail. If we instead defined each network in its own TensorFlow graph, then it would work:

with tf.Graph().as_default():
    a = Network()
with tf.Graph().as_default():
    b = Network()
b.set_weights(a.get_weights())

This issue does not occur between actors that contain a network, as each actor is in its own process, and thus is in its own graph. This also does not occur when using set_flat.

Another issue to keep in mind is that TensorFlowVariables needs to add new operations to the graph. If you close the graph and make it immutable, e.g. creating a MonitoredTrainingSession the initialization will fail. To resolve this, simply create the instance before you close the graph.