Skip to content

Latest commit

 

History

History
307 lines (254 loc) · 10.2 KB

dimless-form.rst

File metadata and controls

307 lines (254 loc) · 10.2 KB

Dimensionless Formulation

To improve numerical stability, gyre solves the separated equations <osc-sep-eqns> by recasting them into a dimensionless form that traces its roots back to :ads_citet:dziembowski:1971.

Variables

The independent variable is the fractional radius x ≡ r/R and the dependent variables {y1, y2, …, y6} are

$$\begin{aligned} \begin{align} y_{1} &= x^{2 - \ell}\, \frac{\txir}{r}, \\\ y_{2} &= x^{2-\ell}\, \frac{\tP'}{\rho g r}, \\\ y_{3} &= x^{2-\ell}\, \frac{\tPhi'}{gr}, \\\ y_{4} &= x^{2-\ell}\, \frac{1}{g} \deriv{\tPhi'}{r}, \\\ y_{5} &= x^{2-\ell}\, \frac{\delta \tS}{c_{p}}, \\\ y_{6} &= x^{-1-\ell}\, \frac{\delta \tLrad}{L}. \end{align} \end{aligned}$$

Oscillation Equations

The dimensionless oscillation equations are

$$\begin{aligned} \begin{align} x \deriv{y_{1}}{x} &= \left( \frac{V}{\Gammi} - 1 - \ell \right) y_{1} + \left( \frac{\ell(\ell+1)}{c_{1} \omegac^{2}} - \alphagam \frac{V}{\Gammi} \right) y_{2} + \alphagrv \frac{\ell(\ell+1)}{c_{1} \omegac^{2}} y_{3} + \delta \, y_{5}, \\\ % x \deriv{y_{2}}{x} &= \left( c_{1} \omegac^{2} - \fpigam \As \right) y_{1} + \left( 3 - U + \As - \ell \right) y_{2} - \alphagrv y_{4} + \delta \, y_{5}, \\\ % x \deriv{y_{3}}{x} &= \alphagrv \left( 3 - U - \ell \right) y_{3} + \alphagrv y_{4} \\\ % x \deriv{y_{4}}{x} &= \alphagrv \As U y_{1} + \alphagrv \frac{V}{\Gammi} U y_{2} + \alphagrv \ell(\ell+1) y_{3} - \alphagrv (U + \ell - 2) y_{4} - \alphagrv \delta \, U y_{5}, \\\ % x \deriv{y_{5}}{x} &= \frac{V}{\frht} \left[ \nabad (U - c_{1}\omegac^{2}) - 4 (\nabad - \nabla) + \ckapad V \nabla + \cdif \right] y_{1} + \mbox{} \\\ & \frac{V}{\frht} \left[ \frac{\ell(\ell+1)}{c_{1} \omegac^{2}} (\nabad - \nabla) - \ckapad V \nabla - \cdif \right] y_{2} + \mbox{} \\\ & \alphagrv \frac{V}{\frht} \left[ \frac{\ell(\ell+1)}{c_{1} \omegac^{2}} (\nabad - \nabla) \right] y_{3} + \alphagrv \frac{V \nabad}{\frht} y_{4} + \mbox{} \\\ & \left[ \frac{V \nabla}{\frht} (4 \frht - \ckapS) + \dfrht + 2 - \ell \right] y_{5} - \frac{V \nabla}{\frht \crad} y_{6} \\\ % x \deriv{y_{6}}{x} &= \left[ \alphahfl \ell(\ell+1) \left( \frac{\nabad}{\nabla} - 1 \right) \crad - V \cepsad \right] y_{1} + \mbox{} \\\ & \left[ V \cepsad - \ell(\ell+1) \crad \left( \alphahfl \frac{\nabad}{\nabla} - \frac{3 + \dcrad}{c_{1}\omegac^{2}} \right) \right] y_{2} + \mbox{} \\\ & \alphagrv \left[ \ell(\ell+1) \crad \frac{3 + \dcrad}{c_{1}\omegac^{2}} \right] y_{3} + \left[ \cepsS - \alphahfl \frac{\ell(\ell+1)\crad}{\nabla V} + \ii \alphathm \omegac \cthk \right] y_{5} - \left[ 1 + \ell \right] y_{6}. \end{align} \end{aligned}$$

These equations are derived from the separated equations, but with the insertion of 'switch' terms (denoted α) that allow certain pieces of physics to be altered. See the osc-physics-switches section for more details

For non-radial adiabatic calculations, the last two equations above are set aside and the y5 terms dropped from the first four equations. For radial adiabatic calculations with :nml_n:reduce_order=:nml_v:.TRUE. (see the osc-params section), the last four equations are set aside and the first two replaced by

$$\begin{aligned} \begin{align} x \deriv{y_{1}}{x} &= \left( \frac{V}{\Gammi} - 1 \right) y_{1} - \frac{V}{\Gamma_{1}} y_{2}, \\\ % x \deriv{y_{2}}{x} &= \left( c_{1} \omega^{2} + U - \As \right) y_{1} + \left( 3 - U + \As \right) y_{2}. \end{align} \end{aligned}$$

Boundary Conditions

Inner Boundary

When :nml_n:inner_bound=:nml_v:'REGULAR', GYRE applies regularity-enforcing conditions at the inner boundary:

$$\begin{aligned} \begin{align} c_{1} \omega^{2} y_{1} - \ell y_{2} - \alphagrv \ell y_{3} &= 0, \\\ \alphagrv \ell y_{3} - (2\alphagrv - 1) y_{4} &= 0, \\\ y_{5} &= 0. \end{align} \end{aligned}$$

When :nml_n:inner_bound=:nml_v:'ZERO_R', the first and second conditions are replaced with zero radial displacement conditions,

$$\begin{aligned} \begin{align} y_{1} &= 0, \\\ y_{4} &= 0. \end{align} \end{aligned}$$

Likewise, when :nml_n:inner_bound=:nml_v:'ZERO_H', the first and second conditions are replaced with zero horizontal displacement conditions,

$$\begin{aligned} \begin{align} y_{2} - y_{3} &= 0, \\\ y_{4} &= 0. \end{align} \end{aligned}$$

Outer Boundary

When :nml_n:outer_bound=:nml_v:'VACUUM', GYRE applies vacuum surface pressure conditions at the outer boundary:

$$\begin{aligned} \begin{align} y_{1} - y_{2} &= 0 \\\ \alphagrv U y_{1} + (\alphagrv \ell + 1) y_{3} + \alphagrv y_{4} &= 0 \\\ (2 - 4\nabad V) y_{1} + 4 \nabad V y_{2} + 4 \frht y_{5} - y_{6} &= 0 \end{align} \end{aligned}$$

When :nml_n:outer_bound=:nml_v:'DZIEM', the first condition is replaced by the :ads_citet:dziembowski:1971 outer mechanical boundary condition,

$$\left\{ 1 + V^{-1} \left[ \frac{\ell(\ell+1)}{c_{1} \omega^{2}} - 4 - c_{1} \omega^{2} \right] \right\} y_{1} - y_{2} = 0.$$

When :nml_n:outer_bound=:nml_v:'UNNO'|:nml_v:'JCD', the first condition is replaced by the (possibly-leaky) outer mechanical boundary conditions described by :ads_citet:unno:1989 and :ads_citet:christensen-dalsgaard:2008, respectively. When :nml_n:outer_bound=:nml_v:'ISOTHERMAL', the first condition is replaced by a (possibly-leaky) outer mechanical boundary condition derived from a local dispersion analysis of an isothermal atmosphere.

Finally, when :nml_n:outer_bound=:nml_v:'GAMMA', the first condition is replaced by the outer mechanical boundary condition described by :ads_citet:ong:2020.

Jump Conditions

Across density discontinuities, GYRE enforces conservation of mass, momentum and energy by applying the jump conditions

$$\begin{aligned} \begin{align} U^{+} y_{2}^{+} - U^{-} y_{2}^{-} &= y_{1} (U^{+} - U^{-}) \\\ y_{4}^{+} - y_{4}^{-} &= -y_{1} (U^{+} - U^{-}) \\\ y_{5}^{+} - y_{5}^{-} &= - V^{+} \nabad^{+} (y_{2}^{+} - y_{1}) + V^{-} \nabad^{-} (y_{2}^{-} - y_{1}) \end{align} \end{aligned}$$

Here, + (-) superscripts indicate quantities evaluated on the inner (outer) side of the discontinuity. y1, y3 and y6 remain continuous across discontinuities, and therefore don't need these superscripts.

Structure Coefficients

The various stellar structure coefficients appearing in the dimensionless oscillation equations are defined as follows:

$$\begin{aligned} \begin{gather} V = -\deriv{\ln P}{\ln r} \qquad V_{2} = x^{-2} V \qquad \As = \frac{1}{\Gamma_{1}} \deriv{\ln P}{\ln r} - \deriv{\ln \rho}{\ln r} \qquad U = \deriv{\ln M_{r}}{\ln r} \\\ % c_1 = \frac{r^{3}}{R^{3}} \frac{M}{M_{r}} \qquad \fpigam = \begin{cases} \alphapi & \As > 0, x < x_{\rm atm} \\\ \alphagam & \As > 0, x > x_{\rm atm} \\\ 1 & \text{otherwise} \end{cases}\\\ % \nabla = \deriv{\ln T}{\ln P} \qquad \clum = x^{-3} \frac{\Lrad+\Lcon}{L} \qquad \crad = x^{-3} \frac{\Lrad}{L} \qquad \dcrad = \deriv{\ln \crad}{\ln r} \\\ % \frht = 1 - \alpharht \frac{\ii \omega \cthn}{4} \qquad \dfrht = - \alpharht \frac{\ii \omega \cthn \dcthn}{4 \frht} \\\ % \ckapad = \frac{\alphakar \kaprho}{\Gamma_{1}} + \nabad \alphakat \kapT \qquad \ckapS = - \upsT \alphakar \kaprho + \alphakat \kapT \\\ % \ceps = x^{-3} \frac{4\pi r^{3} \rho \epsnuc}{L} \qquad \cepsad = \ceps \epsnucad \qquad \cepsS = \ceps \epsnucS \\\ % \cdif = - 4 \nabad V \nabla + \nabad \left(V + \deriv{\ln \nabad}{\ln x} \right) \\\ % \cthn = \frac{\cP}{a c \kappa T^{3}} \sqrt{\frac{GM}{R^{3}}} \qquad \dcthn = \deriv{\ln \cthn}{\ln r} \\\ % \cthk = x^{-3} \frac{4\pi r^{3} \cP T \rho}{L} \sqrt{\frac{GM}{R^{3}}} \end{gather} \end{aligned}$$

Physics Switches

GYRE offers the capability to adjust the oscillation equations through a number of physics switches, controlled by parameters in the :nml_g:osc namelist group. The table below summarizes the mapping between the switches appearing in the expressions above, and the corresponding namelist parameters.

Symbol Parameter Description
$\alphagrv$ :nml_n:alpha_grv Scaling factor for gravitational potential perturbations. Set to 1 for normal behavior, and to 0 for the :ads_citet:cowling:1941 approximation
$\alphathm$ :nml_n:alpha_thm Scaling factor for local thermal timescale. Set to 1 for normal behavior, to 0 for the non-adiabatic reversible (NAR) approximation (see :ads_citealp:glatzel:1990), and to a large value to approach the adiabatic limit
$\alphahfl$ :nml_n:alpha_hfl Scaling factor for horizontal flux perturbations. Set to 1 for normal behavior, and to 0 for the non-adiabatic radial flux (NARF) approximation (see :ads_citealp:townsend:2003b)
$\alphagam$ :nml_n:alpha_gam Scaling factor for g-mode isolation. Set to 1 for normal behavior, and to 0 to isolate g modes as described by :ads_citet:ong:2020
$\alphapi$ :nml_n:alpha_pi Scaling factor for p-mode isolation. Set to 1 for normal behavior, and to 0 to isolate p modes as described by :ads_citet:ong:2020
$\alphakar$ :nml_n:alpha_kar Scaling factor for opacity density partial derivative. Set to 1 for normal behavior, and to 0 to suppress the density part of the κ mechanism
$\alphakat$ :nml_n:alpha_kat Scaling factor for opacity temperature partial derivative. Set to 1 for normal behavior, and to 0 to suppress the temperature part of the κ mechanism
$\alpharht$ :nml_n:alpha_rht Scaling factor for time-dependent term in the radiative heat equation (see :ads_citealp:unno:1966). Set to 1 to include this term (Unno calls this the Eddington approximation), and to 0 to ignore the term