-
Notifications
You must be signed in to change notification settings - Fork 246
/
Copy patheeg_interp.m
444 lines (400 loc) · 17.8 KB
/
eeg_interp.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
% EEG_INTERP - interpolate data channels
%
% Usage: EEGOUT = eeg_interp(EEG, badchans, method, t_range);
%
% Inputs:
% EEG - EEGLAB dataset
% badchans - [integer array] indices of channels to interpolate.
% For instance, these channels might be bad.
% [chanlocs structure] channel location structure containing
% either locations of channels to interpolate or a full
% channel structure (missing channels in the current
% dataset are interpolated).
% method - [string] method used for interpolation (default is 'spherical').
% 'invdist'/'v4' uses inverse distance on the scalp
% 'spherical' uses superfast spherical interpolation.
% 'sphericalKang' uses Kang et al. 2015 parameters
% 'spacetime' uses griddata3 to interpolate both in space
% and time (very slow and cannot be interrupted).
% t_range - [integer array with just two elements] time interval of the
% badchans which should be interpolated. First element is
% the start time and the second element is the end time.
% params - [1x3 array] Parameters [lambda m n]. Defaults are
% 'spherical' -> lambda=0, m = 4, n =7 (Perin et al., 1989)
% 'sphericalKang' -> lambda=1e-8, m = 3 , n = 50 (Kang et al., 2015)
% if the 'params' input is used, then a spherical
% interpolation is used with these parameters (method is
% ignored). See also https://github.com/sccn/eeglab/issues/500
% Output:
% EEGOUT - data set with bad electrode data replaced by
% interpolated data
%
% Note: See also the sphericalSplineInterpolate function of the clean_rawdata
% EEGLAB plugin (in the private folder) which approximate Legendre
% polynomials with up to 500 iteration. .
%
% References:
% Perrin, F., Pernier, J., Bertrand, O., & Echallier, J. F. (1989). Spherical
% splines for scalp potential and current density mapping. Electroencephalography
% and clinical neurophysiology, 72(2), 184–187. https://doi.org/10.1016/0013-4694(89)90180-6
%
% Kang, S.S., Lano, T.J. & Sponheim, S.R. Distortions in EEG interregional phase
% synchrony by spherical spline interpolation: causes and remedies. Neuropsychiatr
% Electrophysiol 1, 9 (2015). https://doi.org/10.1186/s40810-015-0009-5
%
% Author: Arnaud Delorme, CERCO, CNRS, Mai 2006-
% Copyright (C) Arnaud Delorme, CERCO, 2006, arno@salk.edu
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function EEG = eeg_interp(ORIEEG, bad_elec, method, t_range, params)
if nargin < 2
help eeg_interp;
return;
end
EEG = ORIEEG;
if nargin < 3
disp('Using spherical interpolation');
method = 'spherical';
end
if nargin < 4
t_range = [ORIEEG.xmin ORIEEG.xmax];
end
if nargin < 5
if strcmpi(method, 'spherical')
params = [0 4 7];
elseif strcmpi(method, 'sphericalKang')
params = [1e-8 3 50];
elseif strcmpi(method, 'sphericalCRD')
params = [1e-5 4 500];
end
else
if length(params) ~=3
error('parameters array must have 3 elements')
end
method = 'spherical';
end
% check channel structure
tmplocs = ORIEEG.chanlocs;
if isempty(tmplocs) || isempty([tmplocs.X])
error('Interpolation require channel location');
end
if isstruct(bad_elec)
% remove duplicate channel labels
% -------------------------------
allLabels = { bad_elec.labels };
if length(unique(allLabels)) ~= length(allLabels)
[~,uniqueInd] = unique(allLabels);
bad_elec = bad_elec(uniqueInd);
end
% add missing channels in interpolation structure
% -----------------------------------------------
lab1 = { bad_elec.labels };
tmpchanlocs = EEG.chanlocs;
lab2 = { tmpchanlocs.labels };
[~, tmpchan] = setdiff_bc( lab2, lab1);
tmpchan = sort(tmpchan);
% From 'bad_elec' using only fields present on EEG.chanlocs
fields = fieldnames(bad_elec);
[~, indx1] = setxor(fields,fieldnames(EEG.chanlocs)); clear tmp;
if ~isempty(indx1)
bad_elec = rmfield(bad_elec,fields(indx1));
fields = fieldnames(bad_elec);
end
if ~isempty(tmpchan)
newchanlocs = [];
for index = 1:length(fields)
if isfield(bad_elec, fields{index})
for cind = 1:length(tmpchan)
fieldval = getfield( EEG.chanlocs, { tmpchan(cind) }, fields{index});
newchanlocs = setfield(newchanlocs, { cind }, fields{index}, fieldval);
end
end
end
newchanlocs(end+1:end+length(bad_elec)) = bad_elec;
bad_elec = newchanlocs;
end
if length(EEG.chanlocs) == length(bad_elec), return; end
lab1 = { bad_elec.labels };
tmpchanlocs = EEG.chanlocs;
lab2 = { tmpchanlocs.labels };
[~, badchans] = setdiff_bc( lab1, lab2);
fprintf('Interpolating %d channels...\n', length(badchans));
if isempty(badchans), return; end
goodchans = sort(setdiff(1:length(bad_elec), badchans));
% re-order good channels
% ----------------------
[~, tmp2, neworder] = intersect_bc( lab1, lab2 );
[~, ordertmp2] = sort(tmp2);
neworder = neworder(ordertmp2);
EEG.data = EEG.data(neworder, :, :);
% looking at channels for ICA
% ---------------------------
%[tmp sorti] = sort(neworder);
%{ EEG.chanlocs(EEG.icachansind).labels; bad_elec(goodchans(sorti(EEG.icachansind))).labels }
% update EEG dataset (add blank channels)
% ---------------------------------------
if ~isempty(EEG.icasphere)
[~, sorti] = sort(neworder);
EEG.icachansind = sorti(EEG.icachansind);
EEG.icachansind = goodchans(EEG.icachansind);
EEG.chaninfo.icachansind = EEG.icachansind;
% TESTING SORTING
%icachansind = [ 3 4 5 7 8]
%data = round(rand(8,10)*10)
%neworder = shuffle(1:8)
%data2 = data(neworder,:)
%icachansind2 = sorti(icachansind)
%data(icachansind,:)
%data2(icachansind2,:)
end
% { EEG.chanlocs(neworder).labels; bad_elec(sort(goodchans)).labels }
%tmpdata = zeros(length(bad_elec), size(EEG.data,2), size(EEG.data,3));
%tmpdata(goodchans, :, :) = EEG.data;
% looking at the data
% -------------------
%tmp1 = mattocell(EEG.data(sorti,1));
%tmp2 = mattocell(tmpdata(goodchans,1));
%{ EEG.chanlocs.labels; bad_elec(goodchans).labels; tmp1{:}; tmp2{:} }
%EEG.data = tmpdata;
EEG.chanlocs = bad_elec;
else
badchans = bad_elec;
goodchans = setdiff_bc(1:EEG.nbchan, badchans);
if strcmpi(method, 'sphericalfast')
EEG.data(badchans,:) = [];
EEG.nbchan = length(goodchans);
else
oldelocs = EEG.chanlocs;
EEG = pop_select(EEG, 'nochannel', badchans);
EEG.chanlocs = oldelocs;
disp('Interpolating missing channels...');
end
end
% find non-empty good channels
% ----------------------------
origoodchans = goodchans;
chanlocs = EEG.chanlocs;
nonemptychans = find(~cellfun('isempty', { chanlocs.theta }));
[tmp indgood ] = intersect_bc(goodchans, nonemptychans);
goodchans = goodchans( sort(indgood) );
datachans = getdatachans(goodchans,badchans);
badchans = intersect_bc(badchans, nonemptychans);
if isempty(badchans), return; end
% scan data points
% ----------------
if strcmpi(method, 'spherical') || strcmpi(method, 'sphericalfast') || strcmpi(method, 'sphericalKang')
% get theta, rad of electrodes
% ----------------------------
tmpgoodlocs = EEG.chanlocs(goodchans);
xelec = [ tmpgoodlocs.X ];
yelec = [ tmpgoodlocs.Y ];
zelec = [ tmpgoodlocs.Z ];
rad = sqrt(xelec.^2+yelec.^2+zelec.^2);
xelec = xelec./rad;
yelec = yelec./rad;
zelec = zelec./rad;
tmpbadlocs = EEG.chanlocs(badchans);
xbad = [ tmpbadlocs.X ];
ybad = [ tmpbadlocs.Y ];
zbad = [ tmpbadlocs.Z ];
rad = sqrt(xbad.^2+ybad.^2+zbad.^2);
xbad = xbad./rad;
ybad = ybad./rad;
zbad = zbad./rad;
if isempty(xbad)
error('Trying to interpolate a channel without coordinates assigned to it');
end
EEG.data = reshape(EEG.data, EEG.nbchan, EEG.pnts*EEG.trials);
%[tmp1 tmp2 tmp3 tmpchans] = spheric_spline_old( xelec, yelec, zelec, EEG.data(goodchans,1));
%max(tmpchans(:,1)), std(tmpchans(:,1)),
%[tmp1 tmp2 tmp3 EEG.data(badchans,:)] = spheric_spline( xelec, yelec, zelec, xbad, ybad, zbad, EEG.data(goodchans,:));
[tmp1 tmp2 tmp3 badchansdata] = spheric_spline( xelec, yelec, zelec, xbad, ybad, zbad, EEG.data(datachans,:), params);
%max(EEG.data(goodchans,1)), std(EEG.data(goodchans,1))
%max(EEG.data(badchans,1)), std(EEG.data(badchans,1))
EEG.data = reshape(EEG.data, EEG.nbchan, EEG.pnts, EEG.trials);
elseif strcmpi(method, 'spacetime') % 3D interpolation, works but x10 times slower
disp('Warning: if processing epoch data, epoch boundary are ignored...');
disp('3-D interpolation, this can take a long (long) time...');
tmpgoodlocs = EEG.chanlocs(goodchans);
tmpbadlocs = EEG.chanlocs(badchans);
[xbad ,ybad] = pol2cart([tmpbadlocs.theta],[tmpbadlocs.radius]);
[xgood,ygood] = pol2cart([tmpgoodlocs.theta],[tmpgoodlocs.radius]);
pnts = size(EEG.data,2)*size(EEG.data,3);
zgood = 1:pnts;
zgood = repmat(zgood, [length(xgood) 1]);
zgood = reshape(zgood,numel(zgood),1);
xgood = repmat(xgood, [1 pnts]); xgood = reshape(xgood,numel(xgood),1);
ygood = repmat(ygood, [1 pnts]); ygood = reshape(ygood,numel(ygood),1);
tmpdata = reshape(EEG.data(datachans,:,:), numel(EEG.data(datachans,:,:)),1);
zbad = 1:pnts;
zbad = repmat(zbad, [length(xbad) 1]);
zbad = reshape(zbad,numel(zbad),1);
xbad = repmat(xbad, [1 pnts]); xbad = reshape(xbad,numel(xbad),1);
ybad = repmat(ybad, [1 pnts]); ybad = reshape(ybad,numel(ybad),1);
badchansdata = griddatan([ygood, xgood, zgood], tmpdata,[ybad, xbad, zbad], 'nearest'); % interpolate data
else
% get theta, rad of electrodes
% ----------------------------
tmpchanlocs = EEG.chanlocs;
[xbad ,ybad] = pol2cart([tmpchanlocs( badchans).theta],[tmpchanlocs( badchans).radius]);
[xgood,ygood] = pol2cart([tmpchanlocs(goodchans).theta],[tmpchanlocs(goodchans).radius]);
fprintf('Points (/%d):', size(EEG.data,2)*size(EEG.data,3));
badchansdata = zeros(length(badchans), size(EEG.data,2)*size(EEG.data,3));
for t=1:(size(EEG.data,2)*size(EEG.data,3)) % scan data points
if mod(t,100) == 0, fprintf('%d ', t); end
if mod(t,1000) == 0, fprintf('\n'); end;
%for c = 1:length(badchans)
% [h EEG.data(badchans(c),t)]= topoplot(EEG.data(goodchans,t),EEG.chanlocs(goodchans),'noplot', ...
% [EEG.chanlocs( badchans(c)).radius EEG.chanlocs( badchans(c)).theta]);
%end
tmpdata = reshape(EEG.data, size(EEG.data,1), size(EEG.data,2)*size(EEG.data,3) );
if strcmpi(method, 'invdist'), method = 'v4'; end
[Xi,Yi,badchansdata(:,t)] = griddata(ygood, xgood , double(tmpdata(datachans,t)'),...
ybad, xbad, method); % interpolate data
end
fprintf('\n');
end
tmpdata = zeros(length(bad_elec), EEG.pnts, EEG.trials);
tmpdata(origoodchans, :,:) = EEG.data;
%if input data are epoched reshape badchansdata for Octave compatibility...
if length(size(tmpdata))==3
badchansdata = reshape(badchansdata,length(badchans),size(tmpdata,2),size(tmpdata,3));
end
if ~isempty(t_range)
t_start = t_range(1);
t_end = t_range(2);
if t_start~=ORIEEG.xmin || t_end~=ORIEEG.xmax
if length(size(tmpdata))==2
times_2b_ignored = [1:floor(t_start*ORIEEG.srate), floor(t_end*ORIEEG.srate):floor(ORIEEG.xmax*ORIEEG.srate)];
badchansdata(:, times_2b_ignored) = ORIEEG.data(badchans, times_2b_ignored);
end
end
end
tmpdata(badchans,:,:) = badchansdata;
EEG.data = tmpdata;
EEG.nbchan = size(EEG.data,1);
if ~strcmpi(method, 'sphericalfast')
EEG = eeg_checkset(EEG);
end
% get data channels
% -----------------
function datachans = getdatachans(goodchans, badchans);
datachans = goodchans;
badchans = sort(badchans);
for index = length(badchans):-1:1
datachans(find(datachans > badchans(index))) = datachans(find(datachans > badchans(index)))-1;
end
% -----------------
% spherical splines
% -----------------
% function [x, y, z, Res] = spheric_spline_old( xelec, yelec, zelec, values)
%
% SPHERERES = 20;
% [x,y,z] = sphere(SPHERERES);
% x(1:(length(x)-1)/2,:) = []; x = [ x(:)' ];
% y(1:(length(y)-1)/2,:) = []; y = [ y(:)' ];
% z(1:(length(z)-1)/2,:) = []; z = [ z(:)' ];
%
% Gelec = computeg(xelec,yelec,zelec,xelec,yelec,zelec);
% Gsph = computeg(x,y,z,xelec,yelec,zelec);
%
% % equations are
% % Gelec*C + C0 = Potential (C unknown)
% % Sum(c_i) = 0
% % so
% % [c_1]
% % * [c_2]
% % [c_ ]
% % xelec [c_n]
% % [x x x x x] [potential_1]
% % [x x x x x] [potential_ ]
% % [x x x x x] = [potential_ ]
% % [x x x x x] [potential_4]
% % [1 1 1 1 1] [0]
%
% % compute solution for parameters C
% % ---------------------------------
% meanvalues = mean(values);
% values = values - meanvalues; % make mean zero
% C = pinv([Gelec;ones(1,length(Gelec))]) * [values(:);0];
%
% % apply results
% % -------------
% Res = zeros(1,size(Gsph,1));
% for j = 1:size(Gsph,1)
% Res(j) = sum(C .* Gsph(j,:)');
% end
% Res = Res + meanvalues;
% Res = reshape(Res, length(x(:)),1);
function [xbad, ybad, zbad, allres] = spheric_spline( xelec, yelec, zelec, xbad, ybad, zbad, values, params)
newchans = length(xbad);
numpoints = size(values,2);
%SPHERERES = 20;
%[x,y,z] = sphere(SPHERERES);
%x(1:(length(x)-1)/2,:) = []; xbad = [ x(:)'];
%y(1:(length(x)-1)/2,:) = []; ybad = [ y(:)'];
%z(1:(length(x)-1)/2,:) = []; zbad = [ z(:)'];
Gelec = computeg(xelec,yelec,zelec,xelec,yelec,zelec,params);
Gsph = computeg(xbad,ybad,zbad,xelec,yelec,zelec,params);
% compute solution for parameters C
% ---------------------------------
meanvalues = mean(values);
values = values - repmat(meanvalues, [size(values,1) 1]); % make mean zero
values = [values;zeros(1,numpoints)];
lambda = params(1);
C = pinv([Gelec+eye(size(Gelec))*lambda;ones(1,length(Gelec))]) * values;
%C = pinv([Gelec;ones(1,length(Gelec))]) * values;
clear values;
allres = zeros(newchans, numpoints);
% apply results
% -------------
for j = 1:size(Gsph,1)
allres(j,:) = sum(C .* repmat(Gsph(j,:)', [1 size(C,2)]));
end
allres = allres + repmat(meanvalues, [size(allres,1) 1]);
% compute G function
% ------------------
function g = computeg(x,y,z,xelec,yelec,zelec, params)
unitmat = ones(length(x(:)),length(xelec));
EI = unitmat - sqrt((repmat(x(:),1,length(xelec)) - repmat(xelec,length(x(:)),1)).^2 +...
(repmat(y(:),1,length(xelec)) - repmat(yelec,length(x(:)),1)).^2 +...
(repmat(z(:),1,length(xelec)) - repmat(zelec,length(x(:)),1)).^2);
g = zeros(length(x(:)),length(xelec));
m = params(2);
maxn = params(3);
for n = 1:maxn % 200
if ismatlab
L = legendre(n,EI);
else % Octave legendre function cannot process 2-D matrices
for icol = 1:size(EI,2)
tmpL = legendre(n,EI(:,icol));
if icol == 1, L = zeros([ size(tmpL) size(EI,2)]); end
L(:,:,icol) = tmpL;
end
end
g = g + ((2*n+1)/(n^m*(n+1)^m))*squeeze(L(1,:,:));
end
g = g/(4*pi);