Skip to content
This repository
Fetching contributors…

Octocat-spinner-32-eaf2f5

Cannot retrieve contributors at this time

file 506 lines (426 sloc) 13.472 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
"""The suite of window functions."""

import numpy as np
from scipy import special, linalg
from scipy.fftpack import fft

__all__ = ['boxcar', 'triang', 'parzen', 'bohman', 'blackman', 'nuttall',
           'blackmanharris', 'flattop', 'bartlett', 'hanning', 'barthann',
           'hamming', 'kaiser', 'gaussian', 'general_gaussian', 'chebwin',
           'slepian', 'hann', 'get_window']


def boxcar(M, sym=True):
    """The M-point boxcar window.

"""
    return np.ones(M, float)


def triang(M, sym=True):
    """The M-point triangular window.

"""
    if M < 1:
        return np.array([])
    if M == 1:
        return np.ones(1, 'd')
    odd = M % 2
    if not sym and not odd:
        M = M + 1
    n = np.arange(1, int((M + 1) / 2) + 1)
    if M % 2 == 0:
        w = (2 * n - 1.0) / M
        w = np.r_[w, w[::-1]]
    else:
        w = 2 * n / (M + 1.0)
        w = np.r_[w, w[-2::-1]]

    if not sym and not odd:
        w = w[:-1]
    return w


def parzen(M, sym=True):
    """The M-point Parzen window.

"""
    if M < 1:
        return np.array([])
    if M == 1:
        return np.ones(1, 'd')
    odd = M % 2
    if not sym and not odd:
        M = M + 1
    n = np.arange(-(M - 1) / 2.0, (M - 1) / 2.0 + 0.5, 1.0)
    na = np.extract(n < -(M - 1) / 4.0, n)
    nb = np.extract(abs(n) <= (M - 1) / 4.0, n)
    wa = 2 * (1 - np.abs(na) / (M / 2.0)) ** 3.0
    wb = (1 - 6 * (np.abs(nb) / (M / 2.0)) ** 2.0 +
          6 * (np.abs(nb) / (M / 2.0)) ** 3.0)
    w = np.r_[wa, wb, wa[::-1]]
    if not sym and not odd:
        w = w[:-1]
    return w


def bohman(M, sym=True):
    """The M-point Bohman window.

"""
    if M < 1:
        return np.array([])
    if M == 1:
        return np.ones(1, 'd')
    odd = M % 2
    if not sym and not odd:
        M = M + 1
    fac = np.abs(np.linspace(-1, 1, M)[1:-1])
    w = (1 - fac) * np.cos(np.pi * fac) + 1.0 / np.pi * np.sin(np.pi * fac)
    w = np.r_[0, w, 0]
    if not sym and not odd:
        w = w[:-1]
    return w


def blackman(M, sym=True):
    """The M-point Blackman window.

"""
    if M < 1:
        return np.array([])
    if M == 1:
        return np.ones(1, 'd')
    odd = M % 2
    if not sym and not odd:
        M = M + 1
    n = np.arange(0, M)
    w = (0.42 - 0.5 * np.cos(2.0 * np.pi * n / (M - 1)) +
         0.08 * np.cos(4.0 * np.pi * n / (M - 1)))
    if not sym and not odd:
        w = w[:-1]
    return w


def nuttall(M, sym=True):
    """A minimum 4-term Blackman-Harris window according to Nuttall.

"""
    if M < 1:
        return np.array([])
    if M == 1:
        return np.ones(1, 'd')
    odd = M % 2
    if not sym and not odd:
        M = M + 1
    a = [0.3635819, 0.4891775, 0.1365995, 0.0106411]
    n = np.arange(0, M)
    fac = n * 2 * np.pi / (M - 1.0)
    w = (a[0] - a[1] * np.cos(fac) +
         a[2] * np.cos(2 * fac) - a[3] * np.cos(3 * fac))
    if not sym and not odd:
        w = w[:-1]
    return w


def blackmanharris(M, sym=True):
    """The M-point minimum 4-term Blackman-Harris window.

"""
    if M < 1:
        return np.array([])
    if M == 1:
        return np.ones(1, 'd')
    odd = M % 2
    if not sym and not odd:
        M = M + 1
    a = [0.35875, 0.48829, 0.14128, 0.01168]
    n = np.arange(0, M)
    fac = n * 2 * np.pi / (M - 1.0)
    w = (a[0] - a[1] * np.cos(fac) +
         a[2] * np.cos(2 * fac) - a[3] * np.cos(3 * fac))
    if not sym and not odd:
        w = w[:-1]
    return w


def flattop(M, sym=True):
    """The M-point Flat top window.

"""
    if M < 1:
        return np.array([])
    if M == 1:
        return np.ones(1, 'd')
    odd = M % 2
    if not sym and not odd:
        M = M + 1
    a = [0.2156, 0.4160, 0.2781, 0.0836, 0.0069]
    n = np.arange(0, M)
    fac = n * 2 * np.pi / (M - 1.0)
    w = (a[0] - a[1] * np.cos(fac) +
         a[2] * np.cos(2 * fac) - a[3] * np.cos(3 * fac) +
         a[4] * np.cos(4 * fac))
    if not sym and not odd:
        w = w[:-1]
    return w


def bartlett(M, sym=True):
    """The M-point Bartlett window.

"""
    if M < 1:
        return np.array([])
    if M == 1:
        return np.ones(1, 'd')
    odd = M % 2
    if not sym and not odd:
        M = M + 1
    n = np.arange(0, M)
    w = np.where(np.less_equal(n, (M - 1) / 2.0),
                 2.0 * n / (M - 1), 2.0 - 2.0 * n / (M - 1))
    if not sym and not odd:
        w = w[:-1]
    return w


def hanning(M, sym=True):
    """The M-point Hanning window.

"""
    if M < 1:
        return np.array([])
    if M == 1:
        return np.ones(1, 'd')
    odd = M % 2
    if not sym and not odd:
        M = M + 1
    n = np.arange(0, M)
    w = 0.5 - 0.5 * np.cos(2.0 * np.pi * n / (M - 1))
    if not sym and not odd:
        w = w[:-1]
    return w

hann = hanning


def barthann(M, sym=True):
    """Return the M-point modified Bartlett-Hann window.

"""
    if M < 1:
        return np.array([])
    if M == 1:
        return np.ones(1, 'd')
    odd = M % 2
    if not sym and not odd:
        M = M + 1
    n = np.arange(0, M)
    fac = np.abs(n / (M - 1.0) - 0.5)
    w = 0.62 - 0.48 * fac + 0.38 * np.cos(2 * np.pi * fac)
    if not sym and not odd:
        w = w[:-1]
    return w


def hamming(M, sym=True):
    """The M-point Hamming window.

"""
    if M < 1:
        return np.array([])
    if M == 1:
        return np.ones(1, 'd')
    odd = M % 2
    if not sym and not odd:
        M = M + 1
    n = np.arange(0, M)
    w = 0.54 - 0.46 * np.cos(2.0 * np.pi * n / (M - 1))
    if not sym and not odd:
        w = w[:-1]
    return w


def kaiser(M, beta, sym=True):
    """Return a Kaiser window of length M with shape parameter beta.

"""
    if M < 1:
        return np.array([])
    if M == 1:
        return np.ones(1, 'd')
    odd = M % 2
    if not sym and not odd:
        M = M + 1
    n = np.arange(0, M)
    alpha = (M - 1) / 2.0
    w = (special.i0(beta * np.sqrt(1 - ((n - alpha) / alpha) ** 2.0)) /
         special.i0(beta))
    if not sym and not odd:
        w = w[:-1]
    return w


def gaussian(M, std, sym=True):
    """Return a Gaussian window of length M with standard-deviation std.

"""
    if M < 1:
        return np.array([])
    if M == 1:
        return np.ones(1, 'd')
    odd = M % 2
    if not sym and not odd:
        M = M + 1
    n = np.arange(0, M) - (M - 1.0) / 2.0
    sig2 = 2 * std * std
    w = np.exp(-n ** 2 / sig2)
    if not sym and not odd:
        w = w[:-1]
    return w


def general_gaussian(M, p, sig, sym=True):
    """Return a window with a generalized Gaussian shape.

The Gaussian shape is defined as ``exp(-0.5*(x/sig)**(2*p))``, the
half-power point is at ``(2*log(2)))**(1/(2*p)) * sig``.

"""
    if M < 1:
        return np.array([])
    if M == 1:
        return np.ones(1, 'd')
    odd = M % 2
    if not sym and not odd:
        M = M + 1
    n = np.arange(0, M) - (M - 1.0) / 2.0
    w = np.exp(-0.5 * (n / sig) ** (2 * p))
    if not sym and not odd:
        w = w[:-1]
    return w


# `chebwin` contributed by Kumar Appaiah.

def chebwin(M, at, sym=True):
    """Dolph-Chebyshev window.

Parameters
----------
M : int
Window size.
at : float
Attenuation (in dB).
sym : bool
Generates symmetric window if True.

"""
    if M < 1:
        return np.array([])
    if M == 1:
        return np.ones(1, 'd')

    odd = M % 2
    if not sym and not odd:
        M = M + 1

    # compute the parameter beta
    order = M - 1.0
    beta = np.cosh(1.0 / order * np.arccosh(10 ** (np.abs(at) / 20.)))
    k = np.r_[0:M] * 1.0
    x = beta * np.cos(np.pi * k / M)
    # Find the window's DFT coefficients
    # Use analytic definition of Chebyshev polynomial instead of expansion
    # from scipy.special. Using the expansion in scipy.special leads to errors.
    p = np.zeros(x.shape)
    p[x > 1] = np.cosh(order * np.arccosh(x[x > 1]))
    p[x < -1] = (1 - 2 * (order % 2)) * np.cosh(order * np.arccosh(-x[x < -1]))
    p[np.abs(x) <= 1] = np.cos(order * np.arccos(x[np.abs(x) <= 1]))

    # Appropriate IDFT and filling up
    # depending on even/odd M
    if M % 2:
        w = np.real(fft(p))
        n = (M + 1) / 2
        w = w[:n] / w[0]
        w = np.concatenate((w[n - 1:0:-1], w))
    else:
        p = p * np.exp(1.j * np.pi / M * np.r_[0:M])
        w = np.real(fft(p))
        n = M / 2 + 1
        w = w / w[1]
        w = np.concatenate((w[n - 1:0:-1], w[1:n]))
    if not sym and not odd:
        w = w[:-1]
    return w


def slepian(M, width, sym=True):
    """Return the M-point slepian window.

"""
    if (M * width > 27.38):
        raise ValueError("Cannot reliably obtain slepian sequences for"
              " M*width > 27.38.")
    if M < 1:
        return np.array([])
    if M == 1:
        return np.ones(1, 'd')
    odd = M % 2
    if not sym and not odd:
        M = M + 1

    twoF = width / 2.0
    alpha = (M - 1) / 2.0
    m = np.arange(0, M) - alpha
    n = m[:, np.newaxis]
    k = m[np.newaxis, :]
    AF = twoF * special.sinc(twoF * (n - k))
    [lam, vec] = linalg.eig(AF)
    ind = np.argmax(abs(lam), axis=-1)
    w = np.abs(vec[:, ind])
    w = w / max(w)

    if not sym and not odd:
        w = w[:-1]
    return w


def get_window(window, Nx, fftbins=True):
    """
Return a window of length `Nx` and type `window`.

Parameters
----------
window : string, float, or tuple
The type of window to create. See below for more details.
Nx : int
The number of samples in the window.
fftbins : bool, optional
If True, create a "periodic" window ready to use with ifftshift
and be multiplied by the result of an fft (SEE ALSO fftfreq).

Notes
-----
Window types:

boxcar, triang, blackman, hamming, hanning, bartlett,
parzen, bohman, blackmanharris, nuttall, barthann,
kaiser (needs beta), gaussian (needs std),
general_gaussian (needs power, width),
slepian (needs width), chebwin (needs attenuation)


If the window requires no parameters, then `window` can be a string.

If the window requires parameters, then `window` must be a tuple
with the first argument the string name of the window, and the next
arguments the needed parameters.

If `window` is a floating point number, it is interpreted as the beta
parameter of the kaiser window.

Each of the window types listed above is also the name of
a function that can be called directly to create a window of
that type.

Examples
--------
>>> get_window('triang', 7)
array([ 0.25, 0.5 , 0.75, 1. , 0.75, 0.5 , 0.25])
>>> get_window(('kaiser', 4.0), 9)
array([ 0.08848053, 0.32578323, 0.63343178, 0.89640418, 1. ,
0.89640418, 0.63343178, 0.32578323, 0.08848053])
>>> get_window(4.0, 9)
array([ 0.08848053, 0.32578323, 0.63343178, 0.89640418, 1. ,
0.89640418, 0.63343178, 0.32578323, 0.08848053])

"""

    sym = not fftbins
    try:
        beta = float(window)
    except (TypeError, ValueError):
        args = ()
        if isinstance(window, tuple):
            winstr = window[0]
            if len(window) > 1:
                args = window[1:]
        elif isinstance(window, str):
            if window in ['kaiser', 'ksr', 'gaussian', 'gauss', 'gss',
                        'general gaussian', 'general_gaussian',
                        'general gauss', 'general_gauss', 'ggs',
                        'slepian', 'optimal', 'slep', 'dss',
                        'chebwin', 'cheb']:
                raise ValueError("The '" + window + "' window needs one or "
                                    "more parameters -- pass a tuple.")
            else:
                winstr = window

        if winstr in ['blackman', 'black', 'blk']:
            winfunc = blackman
        elif winstr in ['triangle', 'triang', 'tri']:
            winfunc = triang
        elif winstr in ['hamming', 'hamm', 'ham']:
            winfunc = hamming
        elif winstr in ['bartlett', 'bart', 'brt']:
            winfunc = bartlett
        elif winstr in ['hanning', 'hann', 'han']:
            winfunc = hanning
        elif winstr in ['blackmanharris', 'blackharr', 'bkh']:
            winfunc = blackmanharris
        elif winstr in ['parzen', 'parz', 'par']:
            winfunc = parzen
        elif winstr in ['bohman', 'bman', 'bmn']:
            winfunc = bohman
        elif winstr in ['nuttall', 'nutl', 'nut']:
            winfunc = nuttall
        elif winstr in ['barthann', 'brthan', 'bth']:
            winfunc = barthann
        elif winstr in ['flattop', 'flat', 'flt']:
            winfunc = flattop
        elif winstr in ['kaiser', 'ksr']:
            winfunc = kaiser
        elif winstr in ['gaussian', 'gauss', 'gss']:
            winfunc = gaussian
        elif winstr in ['general gaussian', 'general_gaussian',
                        'general gauss', 'general_gauss', 'ggs']:
            winfunc = general_gaussian
        elif winstr in ['boxcar', 'box', 'ones']:
            winfunc = boxcar
        elif winstr in ['slepian', 'slep', 'optimal', 'dss']:
            winfunc = slepian
        elif winstr in ['chebwin', 'cheb']:
            winfunc = chebwin
        else:
            raise ValueError("Unknown window type.")

        params = (Nx,) + args + (sym,)
    else:
        winfunc = kaiser
        params = (Nx, beta, sym)

    return winfunc(*params)
Something went wrong with that request. Please try again.