-
Notifications
You must be signed in to change notification settings - Fork 500
/
Copy pathdijkstra.cpp
71 lines (59 loc) · 2.15 KB
/
dijkstra.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> ii;
typedef vector<int> vi;
typedef vector<ii> vii;
const int INF = 1e9; // INF = 1B, not 2^31-1 to avoid overflow
int main() {
/*
// Graph in Figure 4.17
5 7 0
0 1 2
0 2 6
0 3 7
1 3 3
1 4 6
2 4 1
3 4 5
*/
freopen("dijkstra_in.txt", "r", stdin);
int V, E, s; scanf("%d %d %d", &V, &E, &s);
vector<vii> AL(V, vii());
while (E--) {
int u, v, w; scanf("%d %d %d", &u, &v, &w);
AL[u].emplace_back(v, w); // directed graph
}
vi dist(V, INF); dist[s] = 0; // INF = 1e9 here
// Original Dijkstra's algorithm
/*
set<ii> pq; // balanced BST version
for (int u = 0; u < V; ++u) // dist[u] = INF
pq.insert({dist[u], u}); // but dist[s] = 0
// sort the pairs by non-decreasing distance from s
while (!pq.empty()) { // main loop
auto [d, u] = *pq.begin(); // shortest unvisited u
pq.erase(pq.begin());
for (auto &[v, w] : AL[u]) { // all edges from u
if (dist[u]+w >= dist[v]) continue; // not improving, skip
pq.erase(pq.find({dist[v], v})); // erase old pair
dist[v] = dist[u]+w; // relax operation
pq.insert({dist[v], v}); // enqueue better pair
}
}
*/
// (Modified) Dijkstra's algorithm
priority_queue<ii, vector<ii>, greater<ii>> pq; pq.push({0, s});
// sort the pairs by non-decreasing distance from s
while (!pq.empty()) { // main loop
auto [d, u] = pq.top(); pq.pop(); // shortest unvisited u
if (d > dist[u]) continue; // a very important check
for (auto &[v, w] : AL[u]) { // all edges from u
if (dist[u]+w >= dist[v]) continue; // not improving, skip
dist[v] = dist[u]+w; // relax operation
pq.push({dist[v], v}); // enqueue better pair
}
}
for (int u = 0; u < V; ++u)
printf("SSSP(%d, %d) = %d\n", s, u, dist[u]);
return 0;
}