Skip to content

Latest commit

 

History

History
387 lines (268 loc) · 12.8 KB

07_Examples.rst

File metadata and controls

387 lines (268 loc) · 12.8 KB

7. Examples: Putting it all together

Computing the recoil spectrum of SI & SD nuclear interactions

As an example for nuclear recoils that also illustrates nicely the modular structure of obscura, we compute the nuclear recoil spectrum $\frac{ \mathrm{d}R}{\mathrm{d}E_R}$ for a 10 GeV DM particle interacting with xenon nuclei via spin-independent and spin-dependent interactions.

For the definition and details of the nuclear recoil spectrum, see e.g. chapter 3.5 of [Emken2019].

  1. First we define the DM particle objects that describe SI and SD interactions

The Print_Summary() function is a member of many of the classes and provides a terminal output that summarizes the object.

  1. For the DM distribution we use the standard halo model with default parameters.
  1. As target nuclei, we choose xenon and import the nuclear data.
  1. With these three objects, we can compute the differential nuclear recoil spectrum for a given recoil energy ER.
  1. The results are given in natural units in powers of GeV. To convert it to another unit, we can use the unit functionality of the libphysica library.
The full main.cpp
The terminal output
----------------------------------------
DM particle summary:
        Mass:                   10 GeV
        Spin:                   0.5
        Low mass:               [ ]

        Interaction:            Spin-Independent (SI)

        Coupling ratio fixed:   [x]
        Isospin conservation:   [x]
        Coupling ratio:         fn/fp = 1

        Sigma_P[cm^2]:          1e-40
        Sigma_N[cm^2]:          1e-40
        Sigma_E[cm^2]:          1e-40

        Interaction type:       Contact
----------------------------------------

----------------------------------------
DM particle summary:
        Mass:                   10 GeV
        Spin:                   0.5
        Low mass:               [ ]
Interaction:            Spin-Dependent (SD)

        Coupling ratio fixed:   [x]
        Isospin conservation:   [x]
        Coupling ratio:         fn/fp = 1

        Sigma_P[cm^2]:          1e-40
        Sigma_N[cm^2]:          1e-40
        Sigma_E[cm^2]:          1e-40

----------------------------------------

Dark matter distribution - Summary
        Standard halo model (SHM)

        Local DM density[GeV/cm^3]:     0.4
        Speed domain [km/sec]:          [0,777]
        Average DM velocity [km/sec]:   (-11.1 , -232 , -7.3)
        Average DM speed [km/sec]:      330

        Speed dispersion v_0[km/sec]:   220
        Gal. escape velocity [km/sec]:  544
        Observer's velocity [km/sec]:   (11.1 , 232 , 7.3)
        Observer's speed [km/sec]:      233


Xe
Isotope Z       A       Abund.[%]       Spin    <sp>    <sn>
------------------------------------------------------------
Xe-124  54      124     0.095           0       0       0
Xe-126  54      126     0.089           0       0       0
Xe-128  54      128     1.91            0       0       0
Xe-129  54      129     26.4            0.5     0.01    0.329
Xe-130  54      130     4.07            0       0       0
Xe-131  54      131     21.2            1.5     -0.009  -0.272
Xe-132  54      132     26.9            0       0       0
Xe-134  54      134     10.4            0       0       0
Xe-136  54      136     8.86            0       0       0
Total:          131     99.999

SI-interactions:        dR/dER (1 keV) = 13621.8 events / kg / year / keV
SD-interactions:        dR/dER (1 keV) = 0.132525 events / kg / year / keV

Exclusion limits for a sub-GeV DM particle via electron recoil experiments

As a second example for an application of obscura, we will compute the 95% confidence level exclusion limit on the DM-electron cross section for a sub-GeV DM particle.

We assume a DM mass of 100 MeV, and two different direct detection experiments.

  1. An argon based experiment with an exposure of 100 kg years and an observational threshold of at least 4 ionized electrons.
  2. A semiconductor experiment with Si crystal targets, an exposure of 10 gram years, and an observational threshold of minimum 2 electron-hole pairs.

Let us set up the different objects to obtain the limits.

  1. First we define the DM particle object with 100 MeV mass.
  1. For the DM distribution we again use the standard halo model with default parameters.
  1. For the first experiment, we create an instance of the DM_Detector_Ionization_ER class and specify the desired detector properties of the toy experiment.
  1. The same for the semiconductor experiment:
  1. With these three objects, we can compute the limit on the DM-electron cross section.
  1. As in the previous example, the results are given in natural units in powers of GeV. We convert it to cm2, and print the result on the terminal.
The full main.cpp
The terminal output
----------------------------------------
DM particle summary:
        Mass:                   100 MeV
        Spin:                   0.5
        Low mass:               [ ]

        Interaction:            Spin-Independent (SI)

        Coupling ratio fixed:   [x]
        Isospin conservation:   [x]
        Coupling ratio:         fn/fp = 1

        Sigma_P[cm^2]:          1e-40
        Sigma_N[cm^2]:          1e-40
        Sigma_E[cm^2]:          1e-40

        Interaction type:       Contact
----------------------------------------
Dark matter distribution - Summary
        Standard halo model (SHM)

        Local DM density[GeV/cm^3]:     0.4
        Speed domain [km/sec]:          [0,777]
        Average DM velocity [km/sec]:   (-11.1 , -232 , -7.3)
        Average DM speed [km/sec]:      330

        Speed dispersion v_0[km/sec]:   220
        Gal. escape velocity [km/sec]:  544
        Observer's velocity [km/sec]:   (11.1 , 232 , 7.3)
        Observer's speed [km/sec]:      233


----------------------------------------
Experiment summary:     Argon toy experiment
        Target particles:       Electrons
        Exposure [kg year]:     100
        Flat efficiency [%]:    100
        Observed events:        0
        Expected background:    0
        Statistical analysis:   Poisson


        Electron recoil experiment (ionization).
        Target(s):
                        Ar      (100%)
        Electron bins:          [ ]
        PE (S2) bins:           [ ]
                Ne threshold:   4
                Ne max:         15
----------------------------------------


----------------------------------------
Experiment summary:     Silicon toy experiment
        Target particles:       Electrons
        Exposure [kg year]:     0.01
        Flat efficiency [%]:    100
        Observed events:        0
        Expected background:    0
        Statistical analysis:   Poisson


        Electron recoil experiment (semiconductor).
        Target:                 Si semiconductor
        eh pair threshold:      2
----------------------------------------

Argon experiment:       sigma_e < 1.67038e-41 cm^2 (95%CL)
Silicon experiment:     sigma_e < 1.1756e-39 cm^2 (95%CL)