Skip to content

Latest commit

 

History

History
181 lines (161 loc) · 10.6 KB

literature.rst

File metadata and controls

181 lines (161 loc) · 10.6 KB

Literature

This is a (by far non-exhaustive) list of some references for the various ideas behind the code. They can be cited from the python doc-strings using the format [Author####]_. Within each category, we sort the references by year and author.

[TeNPyNotes] are lecture notes, meant as an introduction to tensor networks (focusing on MPS), and introduced TeNPy to the scientific community by giving examples how to call the algorithms in TeNPy. [TeNPySource] is the location of the source code, and the place where you can report bugs. [TeNPyDoc] is where the location is hosted online. [TeNPyForum] is the place where you can ask questions and look for help, when you are stuck with implementing something.

General reading

[Schollwoeck2011] is an extensive introduction to MPS, DMRG and TEBD with lots of details on the implementations, and a classic read, although a bit lengthy. Our [TeNPyNotes] are a shorter summary of the important concepts, similar as [Orus2014]. [Hubig2019] is a very good, recent review focusing on time evolution with MPS. The lecture notes of [Eisert2013] explain the area law as motivation for tensor networks very well. PEPS are for example reviewed in [Verstraete2009], [Eisert2013] and [Orus2014]. [Stoudenmire2011] reviews the use of DMRG for 2D systems. [Cirac2009] discusses the different groups of tensor network states.

Algorithm developments

[White1992] is the invention of DMRG, which started everything. [Vidal2004] introduced TEBD. [White2005] and [Hubig2015] solved problems for single-site DMRG. [McCulloch2008] was a huge step forward to solve convergence problems for infinite DMRG. [Singh2009], [Singh2010] explain how to incorporate Symmetries. [Haegeman2011] introduced TDVP, again explained more accessible in [Haegeman2016]. [Zaletel2015] is another standard method for time-evolution with long-range Hamiltonians. [Karrasch2013] gives some tricks to do finite-temperature simulations (DMRG), which is a bit extended in [Hauschild2018]. [Vidal2007] introduced MERA.

The following are referenced from somewhere in the algorithms.

The following are not physics-related, but are good to know if you want to work with TeNPy (or more generally Python).

Barthel2020

"Optimized Lie–Trotter–Suzuki decompositions for two and three non-commuting terms" T. Barthel, Y. Zhang, Annals of Physics 418, 168165 (2020), 1901.04974 10.1016/j.aop.2020.168165

CincioVidal2013

"Characterizing Topological Order by Studying the Ground States on an Infinite Cylinder" L. Cincio, G. Vidal, Phys. Rev. Lett. 110, 067208 (2013), 1208.2623 10.1103/PhysRevLett.110.067208

Cirac2009

"Renormalization and tensor product states in spin chains and lattices" J. I. Cirac and F. Verstraete, Journal of Physics A: Mathematical and Theoretical, 42, 50 (2009) 0910.1130 10.1088/1751-8113/42/50/504004

Eisert2013

"Entanglement and tensor network states" J. Eisert, Modeling and Simulation 3, 520 (2013) 1308.3318

Grushin2015

"Characterization and stability of a fermionic ν=1/3 fractional Chern insulator" A. G. Grushin, J. Motruk, M. P. Zaletel, and F. Pollmann, Phys. Rev. B 91, 035136 (2015), 1407.6985 10.1103/PhysRevB.91.035136

HDF5

"Hierarchical Data Format 5 (R)", https://portal.hdfgroup.org/display/HDF5/HDF5 A file format and library for saving data (including metadata). We use it through the python interface of the h5py <https://docs.h5py.org/en/stable/>, see /intro/input_output.

Haegeman2011

"Time-Dependent Variational Principle for Quantum Lattices" J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pizorn, H. Verschelde, F. Verstraete, Phys. Rev. Lett. 107, 070601 (2011), 1103.0936 10.1103/PhysRevLett.107.070601

Haegeman2016

"Unifying time evolution and optimization with matrix product states" J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken, F. Verstraete, Phys. Rev. B 94, 165116 (2016), 1408.5056 10.1103/PhysRevB.94.165116

Hauschild2018

"Finding purifications with minimal entanglement" J. Hauschild, E. Leviatan, J. H. Bardarson, E. Altman, M. P. Zaletel, F. Pollmann, Phys. Rev. B 98, 235163 (2018), 1711.01288 10.1103/PhysRevB.98.235163

Hubig2015

"Strictly single-site DMRG algorithm with subspace expansion" C. Hubig, I. P. McCulloch, U. Schollwoeck, F. A. Wolf, Phys. Rev. B 91, 155115 (2015), 1501.05504 10.1103/PhysRevB.91.155115

Hubig2019

"Time-evolution methods for matrix-product states" S. Paeckel, T. Köhler, A. Swoboda, S. R. Manmana, U. Schollwöck, C. Hubig, 1901.05824

Karrasch2013

"Reducing the numerical effort of finite-temperature density matrix renormalization group calculations" C. Karrasch, J. H. Bardarson, J. E. Moore, New J. Phys. 15, 083031 (2013), 1303.3942 10.1088/1367-2630/15/8/083031

McCulloch2008

"Infinite size density matrix renormalization group, revisited" I. P. McCulloch, 0804.2509

Murg2010

"Matrix product operator representations" V. Murg, J.I. Cirac, B. Pirvu, F. Verstraete, New J. Phys. 12 025012 (2010), 0804.3976, 10.1088/1367-2630/12/2/025012

Neupert2011

"Fractional quantum Hall states at zero magnetic field" T. Neupert, L. Santos, C. Chamon, and C. Mudry, Phys. Rev. Lett. 106, 236804 (2011), 1012.4723 10.1103/PhysRevLett.106.236804

Orus2014

"A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States" R. Orus, Annals of Physics 349, 117-158 (2014) 1306.2164 10.1016/j.aop.2014.06.013

PollmannTurner2012

"Detection of symmetry-protected topological phases in one dimension" F. Pollmann, A. Turner, Phys. Rev. B 86, 125441 (2012), 1204.0704 10.1103/PhysRevB.86.125441

Resta1997

"Quantum-Mechanical Position Operator in Extended Systems" R. Resta, Phys. Rev. Lett. 80, 1800 (1997) 10.1103/PhysRevLett.80.1800

Schollwoeck2011

"The density-matrix renormalization group in the age of matrix product states" U. Schollwoeck, Annals of Physics 326, 96 (2011), 1008.3477 10.1016/j.aop.2010.09.012

Schuch2013

"Condensed Matter Applications of Entanglement Theory" N. Schuch, Quantum Information Processing. Lecture Notes of the 44th IFF Spring School (2013) 1306.5551

Singh2009

"Tensor network decompositions in the presence of a global symmetry" S. Singh, R. Pfeifer, G. Vidal, Phys. Rev. A 82, 050301(R), 0907.2994 10.1103/PhysRevA.82.050301

Singh2010

"Tensor network states and algorithms in the presence of a global U(1) symmetry" S. Singh, R. Pfeifer, G. Vidal, Phys. Rev. B 83, 115125, 1008.4774 10.1103/PhysRevB.83.115125

Stoudenmire2010

"Minimally Entangled Typical Thermal State Algorithms" E.M. Stoudenmire, Steven R. White, 2010 New J. Phys. 12, 055026, 1002.1305 10.1088/1367-2630/12/5/055026

Stoudenmire2011

"Studying Two Dimensional Systems With the Density Matrix Renormalization Group" E.M. Stoudenmire, Steven R. White, Ann. Rev. of Cond. Mat. Physics, 3: 111-128 (2012), 1105.1374 10.1146/annurev-conmatphys-020911-125018

Suzuki1991

"General theory of fractal path integrals with applications to many-body theories and statistical physics", M. Suzuki, Journal of Mathematical Physics 32, 400 (1991); 10.1063/1.529425

TeNPyDoc

Online documentation, https://tenpy.readthedocs.io/

TeNPyForum

Community forum for discussions, FAQ and announcements, https://tenpy.johannes-hauschild.de

TeNPyNotes

"Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy)" J. Hauschild, F. Pollmann, SciPost Phys. Lect. Notes 5 (2018), 1805.00055, 10.21468/SciPostPhysLectNotes.5

TeNPySource

https://github.com/tenpy/tenpy

Verstraete2009

"Matrix Product States, Projected Entangled Pair States, and variational renormalization group methods for quantum spin systems" F. Verstraete and V. Murg and J.I. Cirac, Advances in Physics 57 2, 143-224 (2009) 0907.2796 10.1080/14789940801912366

Vidal2004

"Efficient Simulation of One-Dimensional Quantum Many-Body Systems" G. Vidal, Phys. Rev. Lett. 93, 040502 (2004), quant-ph/0310089 10.1103/PhysRevLett.93.040502

Vidal2007

"Entanglement Renormalization" G. Vidal, Phys. Rev. Lett. 99, 220405 (2007), cond-mat/0512165, 10.1103/PhysRevLett.99.220405

White1992

"Density matrix formulation for quantum renormalization groups" S. White, Phys. Rev. Lett. 69, 2863 (1992) 10.1103/PhysRevLett.69.2863, S. White, Phys. Rev. B 84, 10345 (1992) 10.1103/PhysRevB.48.10345

White2005

"Density matrix renormalization group algorithms with a single center site" S. White, Phys. Rev. B 72, 180403(R) (2005), cond-mat/0508709 10.1103/PhysRevB.72.180403

Yang2012

"Topological flat band models with arbitrary Chern numbers" Shuo Yang, Zheng-Cheng Gu, Kai Sun, and S. Das Sarma, Phys. Rev. B 86, 241112(R) (2012), 1205.5792, 10.1103/PhysRevB.86.241112

Zaletel2015

"Time-evolving a matrix product state with long-ranged interactions" M. P. Zaletel, R. S. K. Mong, C. Karrasch, J. E. Moore, F. Pollmann, Phys. Rev. B 91, 165112 (2015), 1407.1832 10.1103/PhysRevB.91.165112

conda

"conda package manger", https://docs.conda.io/en/latest/ A package and environment management system that allows to easily install (multiple version of) various software, and in particular python packages like TeNPy.

git

"git version control system", https://git-scm.com A software which we use to keep track of changes in the source code.

matplotlib

"Matplotlib", https://matplotlib.org/ A Python 2D plotting library. Some TeNPy functions expect matplotlib.axes.Axes as arguments to plot into.

pip

"pip - the Python Package installer", https://pip.pypa.io/en/stable/ Traditional way to handle installed python packages with pip install ... and pip uninstall ... on the command line.