Permalink
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
220 lines (191 sloc) 9.7 KB
__author__ = 'Thushan Ganegedara'
# These are all the modules we'll be using later. Make sure you can import them
# before proceeding further.
#from __future__ import print_function
import collections
import math
import numpy as np
import os
import random
import tensorflow as tf
import zipfile
from six.moves import range
from six.moves.urllib.request import urlretrieve
from sklearn.manifold import TSNE
url = 'http://mattmahoney.net/dc/'
def maybe_download(filename, expected_bytes):
"""Download a file if not present, and make sure it's the right size."""
if not os.path.exists(filename):
filename, _ = urlretrieve(url + filename, filename)
statinfo = os.stat(filename)
if statinfo.st_size == expected_bytes:
print('Found and verified %s' % filename)
else:
print(statinfo.st_size)
raise Exception(
'Failed to verify ' + filename + '. Can you get to it with a browser?')
return filename
filename = maybe_download('text8.zip', 31344016)
def read_data(filename):
"""Extract the first file enclosed in a zip file as a list of words"""
with zipfile.ZipFile(filename) as f:
data = tf.compat.as_str(f.read(f.namelist()[0])).split()
return data
words = read_data(filename)
print('Data size %d' % len(words))
vocabulary_size = 50000
def build_dataset(words):
# UNK token is used to denote words that are not in the dictionary
count = [['UNK', -1]]
# returns set of tuples (word,count) with most common 50000 words
count.extend(collections.Counter(words).most_common(vocabulary_size - 1))
dictionary = dict()
# set word count for all the words to the current number of keys in the dictionary
# in other words values act as indices for each word
# first word is 'UNK' representing unknown words we encounter
for word, _ in count:
dictionary[word] = len(dictionary)
# this contains the words replaced by assigned indices
data = list()
unk_count = 0
for word in words:
if word in dictionary:
index = dictionary[word]
else:
index = 0 # dictionary['UNK']
unk_count = unk_count + 1
data.append(index)
count[0][1] = unk_count
reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
return data, count, dictionary, reverse_dictionary
data, count, dictionary, reverse_dictionary = build_dataset(words)
print('Most common words (+UNK)', count[:5])
print('Sample data', data[:10])
del words # Hint to reduce memory.
data_index = 0
def generate_batch(batch_size, num_skips, skip_window):
# skip window is the amount of words we're looking at from each side of a given word
# creates a single batch
global data_index
assert batch_size % num_skips == 0
assert num_skips <= 2 * skip_window
batch = np.ndarray(shape=(batch_size), dtype=np.int32)
labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32)
# e.g if skip_window = 2 then span = 5
# span is the length of the whole frame we are considering for a single word (left + word + right)
# skip_window is the length of one side
span = 2 * skip_window + 1 # [ skip_window target skip_window ]
# queue which add and pop at the end
buffer = collections.deque(maxlen=span)
#get words starting from index 0 to span
for _ in range(span):
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
# num_skips => # of times we select a random word within the span?
# batch_size (8) and num_skips (2) (4 times)
# batch_size (8) and num_skips (1) (8 times)
for i in range(batch_size // num_skips):
target = skip_window # target label at the center of the buffer
targets_to_avoid = [ skip_window ] # we only need to know the words around a given word, not the word itself
# do this num_skips (2 times)
# do this (1 time)
for j in range(num_skips):
while target in targets_to_avoid:
# find a target word that is not the word itself
# while loop will keep repeating until the algorithm find a suitable target word
target = random.randint(0, span - 1)
# add selected target to avoid_list for next time
targets_to_avoid.append(target)
# e.g. i=0, j=0 => 0; i=0,j=1 => 1; i=1,j=0 => 2
batch[i * num_skips + j] = buffer[skip_window] # [skip_window] => middle element
labels[i * num_skips + j, 0] = buffer[target]
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
return batch, labels
print('data:', [reverse_dictionary[di] for di in data[:8]])
for num_skips, skip_window in [(2, 1), (4, 2)]:
data_index = 0
batch, labels = generate_batch(batch_size=8, num_skips=num_skips, skip_window=skip_window)
print('\nwith num_skips = %d and skip_window = %d:' % (num_skips, skip_window))
print(' batch:', [reverse_dictionary[bi] for bi in batch])
print(' labels:', [reverse_dictionary[li] for li in labels.reshape(8)])
num_steps = 100001
if __name__ == '__main__':
batch_size = 128
embedding_size = 128 # Dimension of the embedding vector.
skip_window = 1 # How many words to consider left and right.
num_skips = 2 # How many times to reuse an input to generate a label.
# We pick a random validation set to sample nearest neighbors. here we limit the
# validation samples to the words that have a low numeric ID, which by
# construction are also the most frequent.
valid_size = 16 # Random set of words to evaluate similarity on.
valid_window = 100 # Only pick dev samples in the head of the distribution.
# pick 16 samples from 100
valid_examples = np.array(random.sample(range(valid_window), valid_size//2))
valid_examples = np.append(valid_examples,random.sample(range(1000,1000+valid_window), valid_size//2))
num_sampled = 64 # Number of negative examples to sample.
graph = tf.Graph()
with graph.as_default(), tf.device('/cpu:0'):
# Input data.
train_dataset = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
# Variables.
# embedding, vector for each word in the vocabulary
embeddings = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
softmax_weights = tf.Variable(tf.truncated_normal([vocabulary_size, embedding_size],
stddev=1.0 / math.sqrt(embedding_size)))
softmax_biases = tf.Variable(tf.zeros([vocabulary_size]))
# Model.
# Look up embeddings for inputs.
# this might efficiently find the embeddings for given ids (traind dataset)
# manually doing this might not be efficient given there are 50000 entries in embeddings
embed = tf.nn.embedding_lookup(embeddings, train_dataset)
print("Embed size: %s"%embed.get_shape().as_list())
# Compute the softmax loss, using a sample of the negative labels each time.
# inputs are embeddings of the train words
# with this loss we optimize weights, biases, embeddings
loss = tf.reduce_mean(tf.nn.sampled_softmax_loss(softmax_weights, softmax_biases, embed,
train_labels, num_sampled, vocabulary_size))
# Optimizer.
# Note: The optimizer will optimize the softmax_weights AND the embeddings.
# This is because the embeddings are defined as a variable quantity and the
# optimizer's `minimize` method will by default modify all variable quantities
# that contribute to the tensor it is passed.
# See docs on `tf.train.Optimizer.minimize()` for more details.
# Adagrad is required because there are too many things to optimize
optimizer = tf.train.AdagradOptimizer(1.0).minimize(loss)
# Compute the similarity between minibatch examples and all embeddings.
# We use the cosine distance:
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
normalized_embeddings = embeddings / norm
valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings, valid_dataset)
similarity = tf.matmul(valid_embeddings, tf.transpose(normalized_embeddings))
with tf.Session(graph=graph) as session:
tf.initialize_all_variables().run()
print('Initialized')
average_loss = 0
for step in range(num_steps):
batch_data, batch_labels = generate_batch(batch_size, num_skips, skip_window)
feed_dict = {train_dataset : batch_data, train_labels : batch_labels}
_, l = session.run([optimizer, loss], feed_dict=feed_dict)
average_loss += l
if step % 2000 == 0:
if step > 0:
average_loss = average_loss / 2000
# The average loss is an estimate of the loss over the last 2000 batches.
print('Average loss at step %d: %f' % (step, average_loss))
average_loss = 0
# note that this is expensive (~20% slowdown if computed every 500 steps)
if step % 10000 == 0:
sim = similarity.eval()
for i in range(valid_size):
valid_word = reverse_dictionary[valid_examples[i]]
top_k = 8 # number of nearest neighbors
nearest = (-sim[i, :]).argsort()[1:top_k+1]
log = 'Nearest to %s:' % valid_word
for k in range(top_k):
close_word = reverse_dictionary[nearest[k]]
log = '%s %s,' % (log, close_word)
print(log)
final_embeddings = normalized_embeddings.eval()