Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
19 contributors

Users who have contributed to this file

@steveglen @torvalds @JoePerches @gregkh @ynezz @osctobe @davem330 @microchip1 @htejun @rustyrussell @paulgortmaker @Jkirsher @jarodwilson @fillods @ffainelli @emilgoode @DavidDecotigny @dalgaaf @arndb
2344 lines (1888 sloc) 56.8 KB
// SPDX-License-Identifier: GPL-2.0-or-later
/***************************************************************************
*
* Copyright (C) 2007-2010 SMSC
*
*****************************************************************************/
#include <linux/module.h>
#include <linux/kmod.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/usb.h>
#include <linux/bitrev.h>
#include <linux/crc16.h>
#include <linux/crc32.h>
#include <linux/usb/usbnet.h>
#include <linux/slab.h>
#include <linux/of_net.h>
#include "smsc75xx.h"
#define SMSC_CHIPNAME "smsc75xx"
#define SMSC_DRIVER_VERSION "1.0.0"
#define HS_USB_PKT_SIZE (512)
#define FS_USB_PKT_SIZE (64)
#define DEFAULT_HS_BURST_CAP_SIZE (16 * 1024 + 5 * HS_USB_PKT_SIZE)
#define DEFAULT_FS_BURST_CAP_SIZE (6 * 1024 + 33 * FS_USB_PKT_SIZE)
#define DEFAULT_BULK_IN_DELAY (0x00002000)
#define MAX_SINGLE_PACKET_SIZE (9000)
#define LAN75XX_EEPROM_MAGIC (0x7500)
#define EEPROM_MAC_OFFSET (0x01)
#define DEFAULT_TX_CSUM_ENABLE (true)
#define DEFAULT_RX_CSUM_ENABLE (true)
#define SMSC75XX_INTERNAL_PHY_ID (1)
#define SMSC75XX_TX_OVERHEAD (8)
#define MAX_RX_FIFO_SIZE (20 * 1024)
#define MAX_TX_FIFO_SIZE (12 * 1024)
#define USB_VENDOR_ID_SMSC (0x0424)
#define USB_PRODUCT_ID_LAN7500 (0x7500)
#define USB_PRODUCT_ID_LAN7505 (0x7505)
#define RXW_PADDING 2
#define SUPPORTED_WAKE (WAKE_PHY | WAKE_UCAST | WAKE_BCAST | \
WAKE_MCAST | WAKE_ARP | WAKE_MAGIC)
#define SUSPEND_SUSPEND0 (0x01)
#define SUSPEND_SUSPEND1 (0x02)
#define SUSPEND_SUSPEND2 (0x04)
#define SUSPEND_SUSPEND3 (0x08)
#define SUSPEND_ALLMODES (SUSPEND_SUSPEND0 | SUSPEND_SUSPEND1 | \
SUSPEND_SUSPEND2 | SUSPEND_SUSPEND3)
struct smsc75xx_priv {
struct usbnet *dev;
u32 rfe_ctl;
u32 wolopts;
u32 multicast_hash_table[DP_SEL_VHF_HASH_LEN];
struct mutex dataport_mutex;
spinlock_t rfe_ctl_lock;
struct work_struct set_multicast;
u8 suspend_flags;
};
struct usb_context {
struct usb_ctrlrequest req;
struct usbnet *dev;
};
static bool turbo_mode = true;
module_param(turbo_mode, bool, 0644);
MODULE_PARM_DESC(turbo_mode, "Enable multiple frames per Rx transaction");
static int smsc75xx_link_ok_nopm(struct usbnet *dev);
static int smsc75xx_phy_gig_workaround(struct usbnet *dev);
static int __must_check __smsc75xx_read_reg(struct usbnet *dev, u32 index,
u32 *data, int in_pm)
{
u32 buf;
int ret;
int (*fn)(struct usbnet *, u8, u8, u16, u16, void *, u16);
BUG_ON(!dev);
if (!in_pm)
fn = usbnet_read_cmd;
else
fn = usbnet_read_cmd_nopm;
ret = fn(dev, USB_VENDOR_REQUEST_READ_REGISTER, USB_DIR_IN
| USB_TYPE_VENDOR | USB_RECIP_DEVICE,
0, index, &buf, 4);
if (unlikely(ret < 0)) {
netdev_warn(dev->net, "Failed to read reg index 0x%08x: %d\n",
index, ret);
return ret;
}
le32_to_cpus(&buf);
*data = buf;
return ret;
}
static int __must_check __smsc75xx_write_reg(struct usbnet *dev, u32 index,
u32 data, int in_pm)
{
u32 buf;
int ret;
int (*fn)(struct usbnet *, u8, u8, u16, u16, const void *, u16);
BUG_ON(!dev);
if (!in_pm)
fn = usbnet_write_cmd;
else
fn = usbnet_write_cmd_nopm;
buf = data;
cpu_to_le32s(&buf);
ret = fn(dev, USB_VENDOR_REQUEST_WRITE_REGISTER, USB_DIR_OUT
| USB_TYPE_VENDOR | USB_RECIP_DEVICE,
0, index, &buf, 4);
if (unlikely(ret < 0))
netdev_warn(dev->net, "Failed to write reg index 0x%08x: %d\n",
index, ret);
return ret;
}
static int __must_check smsc75xx_read_reg_nopm(struct usbnet *dev, u32 index,
u32 *data)
{
return __smsc75xx_read_reg(dev, index, data, 1);
}
static int __must_check smsc75xx_write_reg_nopm(struct usbnet *dev, u32 index,
u32 data)
{
return __smsc75xx_write_reg(dev, index, data, 1);
}
static int __must_check smsc75xx_read_reg(struct usbnet *dev, u32 index,
u32 *data)
{
return __smsc75xx_read_reg(dev, index, data, 0);
}
static int __must_check smsc75xx_write_reg(struct usbnet *dev, u32 index,
u32 data)
{
return __smsc75xx_write_reg(dev, index, data, 0);
}
/* Loop until the read is completed with timeout
* called with phy_mutex held */
static __must_check int __smsc75xx_phy_wait_not_busy(struct usbnet *dev,
int in_pm)
{
unsigned long start_time = jiffies;
u32 val;
int ret;
do {
ret = __smsc75xx_read_reg(dev, MII_ACCESS, &val, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "Error reading MII_ACCESS\n");
return ret;
}
if (!(val & MII_ACCESS_BUSY))
return 0;
} while (!time_after(jiffies, start_time + HZ));
return -EIO;
}
static int __smsc75xx_mdio_read(struct net_device *netdev, int phy_id, int idx,
int in_pm)
{
struct usbnet *dev = netdev_priv(netdev);
u32 val, addr;
int ret;
mutex_lock(&dev->phy_mutex);
/* confirm MII not busy */
ret = __smsc75xx_phy_wait_not_busy(dev, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "MII is busy in smsc75xx_mdio_read\n");
goto done;
}
/* set the address, index & direction (read from PHY) */
phy_id &= dev->mii.phy_id_mask;
idx &= dev->mii.reg_num_mask;
addr = ((phy_id << MII_ACCESS_PHY_ADDR_SHIFT) & MII_ACCESS_PHY_ADDR)
| ((idx << MII_ACCESS_REG_ADDR_SHIFT) & MII_ACCESS_REG_ADDR)
| MII_ACCESS_READ | MII_ACCESS_BUSY;
ret = __smsc75xx_write_reg(dev, MII_ACCESS, addr, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "Error writing MII_ACCESS\n");
goto done;
}
ret = __smsc75xx_phy_wait_not_busy(dev, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "Timed out reading MII reg %02X\n", idx);
goto done;
}
ret = __smsc75xx_read_reg(dev, MII_DATA, &val, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "Error reading MII_DATA\n");
goto done;
}
ret = (u16)(val & 0xFFFF);
done:
mutex_unlock(&dev->phy_mutex);
return ret;
}
static void __smsc75xx_mdio_write(struct net_device *netdev, int phy_id,
int idx, int regval, int in_pm)
{
struct usbnet *dev = netdev_priv(netdev);
u32 val, addr;
int ret;
mutex_lock(&dev->phy_mutex);
/* confirm MII not busy */
ret = __smsc75xx_phy_wait_not_busy(dev, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "MII is busy in smsc75xx_mdio_write\n");
goto done;
}
val = regval;
ret = __smsc75xx_write_reg(dev, MII_DATA, val, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "Error writing MII_DATA\n");
goto done;
}
/* set the address, index & direction (write to PHY) */
phy_id &= dev->mii.phy_id_mask;
idx &= dev->mii.reg_num_mask;
addr = ((phy_id << MII_ACCESS_PHY_ADDR_SHIFT) & MII_ACCESS_PHY_ADDR)
| ((idx << MII_ACCESS_REG_ADDR_SHIFT) & MII_ACCESS_REG_ADDR)
| MII_ACCESS_WRITE | MII_ACCESS_BUSY;
ret = __smsc75xx_write_reg(dev, MII_ACCESS, addr, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "Error writing MII_ACCESS\n");
goto done;
}
ret = __smsc75xx_phy_wait_not_busy(dev, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "Timed out writing MII reg %02X\n", idx);
goto done;
}
done:
mutex_unlock(&dev->phy_mutex);
}
static int smsc75xx_mdio_read_nopm(struct net_device *netdev, int phy_id,
int idx)
{
return __smsc75xx_mdio_read(netdev, phy_id, idx, 1);
}
static void smsc75xx_mdio_write_nopm(struct net_device *netdev, int phy_id,
int idx, int regval)
{
__smsc75xx_mdio_write(netdev, phy_id, idx, regval, 1);
}
static int smsc75xx_mdio_read(struct net_device *netdev, int phy_id, int idx)
{
return __smsc75xx_mdio_read(netdev, phy_id, idx, 0);
}
static void smsc75xx_mdio_write(struct net_device *netdev, int phy_id, int idx,
int regval)
{
__smsc75xx_mdio_write(netdev, phy_id, idx, regval, 0);
}
static int smsc75xx_wait_eeprom(struct usbnet *dev)
{
unsigned long start_time = jiffies;
u32 val;
int ret;
do {
ret = smsc75xx_read_reg(dev, E2P_CMD, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading E2P_CMD\n");
return ret;
}
if (!(val & E2P_CMD_BUSY) || (val & E2P_CMD_TIMEOUT))
break;
udelay(40);
} while (!time_after(jiffies, start_time + HZ));
if (val & (E2P_CMD_TIMEOUT | E2P_CMD_BUSY)) {
netdev_warn(dev->net, "EEPROM read operation timeout\n");
return -EIO;
}
return 0;
}
static int smsc75xx_eeprom_confirm_not_busy(struct usbnet *dev)
{
unsigned long start_time = jiffies;
u32 val;
int ret;
do {
ret = smsc75xx_read_reg(dev, E2P_CMD, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading E2P_CMD\n");
return ret;
}
if (!(val & E2P_CMD_BUSY))
return 0;
udelay(40);
} while (!time_after(jiffies, start_time + HZ));
netdev_warn(dev->net, "EEPROM is busy\n");
return -EIO;
}
static int smsc75xx_read_eeprom(struct usbnet *dev, u32 offset, u32 length,
u8 *data)
{
u32 val;
int i, ret;
BUG_ON(!dev);
BUG_ON(!data);
ret = smsc75xx_eeprom_confirm_not_busy(dev);
if (ret)
return ret;
for (i = 0; i < length; i++) {
val = E2P_CMD_BUSY | E2P_CMD_READ | (offset & E2P_CMD_ADDR);
ret = smsc75xx_write_reg(dev, E2P_CMD, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing E2P_CMD\n");
return ret;
}
ret = smsc75xx_wait_eeprom(dev);
if (ret < 0)
return ret;
ret = smsc75xx_read_reg(dev, E2P_DATA, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading E2P_DATA\n");
return ret;
}
data[i] = val & 0xFF;
offset++;
}
return 0;
}
static int smsc75xx_write_eeprom(struct usbnet *dev, u32 offset, u32 length,
u8 *data)
{
u32 val;
int i, ret;
BUG_ON(!dev);
BUG_ON(!data);
ret = smsc75xx_eeprom_confirm_not_busy(dev);
if (ret)
return ret;
/* Issue write/erase enable command */
val = E2P_CMD_BUSY | E2P_CMD_EWEN;
ret = smsc75xx_write_reg(dev, E2P_CMD, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing E2P_CMD\n");
return ret;
}
ret = smsc75xx_wait_eeprom(dev);
if (ret < 0)
return ret;
for (i = 0; i < length; i++) {
/* Fill data register */
val = data[i];
ret = smsc75xx_write_reg(dev, E2P_DATA, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing E2P_DATA\n");
return ret;
}
/* Send "write" command */
val = E2P_CMD_BUSY | E2P_CMD_WRITE | (offset & E2P_CMD_ADDR);
ret = smsc75xx_write_reg(dev, E2P_CMD, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing E2P_CMD\n");
return ret;
}
ret = smsc75xx_wait_eeprom(dev);
if (ret < 0)
return ret;
offset++;
}
return 0;
}
static int smsc75xx_dataport_wait_not_busy(struct usbnet *dev)
{
int i, ret;
for (i = 0; i < 100; i++) {
u32 dp_sel;
ret = smsc75xx_read_reg(dev, DP_SEL, &dp_sel);
if (ret < 0) {
netdev_warn(dev->net, "Error reading DP_SEL\n");
return ret;
}
if (dp_sel & DP_SEL_DPRDY)
return 0;
udelay(40);
}
netdev_warn(dev->net, "smsc75xx_dataport_wait_not_busy timed out\n");
return -EIO;
}
static int smsc75xx_dataport_write(struct usbnet *dev, u32 ram_select, u32 addr,
u32 length, u32 *buf)
{
struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
u32 dp_sel;
int i, ret;
mutex_lock(&pdata->dataport_mutex);
ret = smsc75xx_dataport_wait_not_busy(dev);
if (ret < 0) {
netdev_warn(dev->net, "smsc75xx_dataport_write busy on entry\n");
goto done;
}
ret = smsc75xx_read_reg(dev, DP_SEL, &dp_sel);
if (ret < 0) {
netdev_warn(dev->net, "Error reading DP_SEL\n");
goto done;
}
dp_sel &= ~DP_SEL_RSEL;
dp_sel |= ram_select;
ret = smsc75xx_write_reg(dev, DP_SEL, dp_sel);
if (ret < 0) {
netdev_warn(dev->net, "Error writing DP_SEL\n");
goto done;
}
for (i = 0; i < length; i++) {
ret = smsc75xx_write_reg(dev, DP_ADDR, addr + i);
if (ret < 0) {
netdev_warn(dev->net, "Error writing DP_ADDR\n");
goto done;
}
ret = smsc75xx_write_reg(dev, DP_DATA, buf[i]);
if (ret < 0) {
netdev_warn(dev->net, "Error writing DP_DATA\n");
goto done;
}
ret = smsc75xx_write_reg(dev, DP_CMD, DP_CMD_WRITE);
if (ret < 0) {
netdev_warn(dev->net, "Error writing DP_CMD\n");
goto done;
}
ret = smsc75xx_dataport_wait_not_busy(dev);
if (ret < 0) {
netdev_warn(dev->net, "smsc75xx_dataport_write timeout\n");
goto done;
}
}
done:
mutex_unlock(&pdata->dataport_mutex);
return ret;
}
/* returns hash bit number for given MAC address */
static u32 smsc75xx_hash(char addr[ETH_ALEN])
{
return (ether_crc(ETH_ALEN, addr) >> 23) & 0x1ff;
}
static void smsc75xx_deferred_multicast_write(struct work_struct *param)
{
struct smsc75xx_priv *pdata =
container_of(param, struct smsc75xx_priv, set_multicast);
struct usbnet *dev = pdata->dev;
int ret;
netif_dbg(dev, drv, dev->net, "deferred multicast write 0x%08x\n",
pdata->rfe_ctl);
smsc75xx_dataport_write(dev, DP_SEL_VHF, DP_SEL_VHF_VLAN_LEN,
DP_SEL_VHF_HASH_LEN, pdata->multicast_hash_table);
ret = smsc75xx_write_reg(dev, RFE_CTL, pdata->rfe_ctl);
if (ret < 0)
netdev_warn(dev->net, "Error writing RFE_CRL\n");
}
static void smsc75xx_set_multicast(struct net_device *netdev)
{
struct usbnet *dev = netdev_priv(netdev);
struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
unsigned long flags;
int i;
spin_lock_irqsave(&pdata->rfe_ctl_lock, flags);
pdata->rfe_ctl &=
~(RFE_CTL_AU | RFE_CTL_AM | RFE_CTL_DPF | RFE_CTL_MHF);
pdata->rfe_ctl |= RFE_CTL_AB;
for (i = 0; i < DP_SEL_VHF_HASH_LEN; i++)
pdata->multicast_hash_table[i] = 0;
if (dev->net->flags & IFF_PROMISC) {
netif_dbg(dev, drv, dev->net, "promiscuous mode enabled\n");
pdata->rfe_ctl |= RFE_CTL_AM | RFE_CTL_AU;
} else if (dev->net->flags & IFF_ALLMULTI) {
netif_dbg(dev, drv, dev->net, "receive all multicast enabled\n");
pdata->rfe_ctl |= RFE_CTL_AM | RFE_CTL_DPF;
} else if (!netdev_mc_empty(dev->net)) {
struct netdev_hw_addr *ha;
netif_dbg(dev, drv, dev->net, "receive multicast hash filter\n");
pdata->rfe_ctl |= RFE_CTL_MHF | RFE_CTL_DPF;
netdev_for_each_mc_addr(ha, netdev) {
u32 bitnum = smsc75xx_hash(ha->addr);
pdata->multicast_hash_table[bitnum / 32] |=
(1 << (bitnum % 32));
}
} else {
netif_dbg(dev, drv, dev->net, "receive own packets only\n");
pdata->rfe_ctl |= RFE_CTL_DPF;
}
spin_unlock_irqrestore(&pdata->rfe_ctl_lock, flags);
/* defer register writes to a sleepable context */
schedule_work(&pdata->set_multicast);
}
static int smsc75xx_update_flowcontrol(struct usbnet *dev, u8 duplex,
u16 lcladv, u16 rmtadv)
{
u32 flow = 0, fct_flow = 0;
int ret;
if (duplex == DUPLEX_FULL) {
u8 cap = mii_resolve_flowctrl_fdx(lcladv, rmtadv);
if (cap & FLOW_CTRL_TX) {
flow = (FLOW_TX_FCEN | 0xFFFF);
/* set fct_flow thresholds to 20% and 80% */
fct_flow = (8 << 8) | 32;
}
if (cap & FLOW_CTRL_RX)
flow |= FLOW_RX_FCEN;
netif_dbg(dev, link, dev->net, "rx pause %s, tx pause %s\n",
(cap & FLOW_CTRL_RX ? "enabled" : "disabled"),
(cap & FLOW_CTRL_TX ? "enabled" : "disabled"));
} else {
netif_dbg(dev, link, dev->net, "half duplex\n");
}
ret = smsc75xx_write_reg(dev, FLOW, flow);
if (ret < 0) {
netdev_warn(dev->net, "Error writing FLOW\n");
return ret;
}
ret = smsc75xx_write_reg(dev, FCT_FLOW, fct_flow);
if (ret < 0) {
netdev_warn(dev->net, "Error writing FCT_FLOW\n");
return ret;
}
return 0;
}
static int smsc75xx_link_reset(struct usbnet *dev)
{
struct mii_if_info *mii = &dev->mii;
struct ethtool_cmd ecmd = { .cmd = ETHTOOL_GSET };
u16 lcladv, rmtadv;
int ret;
/* write to clear phy interrupt status */
smsc75xx_mdio_write(dev->net, mii->phy_id, PHY_INT_SRC,
PHY_INT_SRC_CLEAR_ALL);
ret = smsc75xx_write_reg(dev, INT_STS, INT_STS_CLEAR_ALL);
if (ret < 0) {
netdev_warn(dev->net, "Error writing INT_STS\n");
return ret;
}
mii_check_media(mii, 1, 1);
mii_ethtool_gset(&dev->mii, &ecmd);
lcladv = smsc75xx_mdio_read(dev->net, mii->phy_id, MII_ADVERTISE);
rmtadv = smsc75xx_mdio_read(dev->net, mii->phy_id, MII_LPA);
netif_dbg(dev, link, dev->net, "speed: %u duplex: %d lcladv: %04x rmtadv: %04x\n",
ethtool_cmd_speed(&ecmd), ecmd.duplex, lcladv, rmtadv);
return smsc75xx_update_flowcontrol(dev, ecmd.duplex, lcladv, rmtadv);
}
static void smsc75xx_status(struct usbnet *dev, struct urb *urb)
{
u32 intdata;
if (urb->actual_length != 4) {
netdev_warn(dev->net, "unexpected urb length %d\n",
urb->actual_length);
return;
}
memcpy(&intdata, urb->transfer_buffer, 4);
le32_to_cpus(&intdata);
netif_dbg(dev, link, dev->net, "intdata: 0x%08X\n", intdata);
if (intdata & INT_ENP_PHY_INT)
usbnet_defer_kevent(dev, EVENT_LINK_RESET);
else
netdev_warn(dev->net, "unexpected interrupt, intdata=0x%08X\n",
intdata);
}
static int smsc75xx_ethtool_get_eeprom_len(struct net_device *net)
{
return MAX_EEPROM_SIZE;
}
static int smsc75xx_ethtool_get_eeprom(struct net_device *netdev,
struct ethtool_eeprom *ee, u8 *data)
{
struct usbnet *dev = netdev_priv(netdev);
ee->magic = LAN75XX_EEPROM_MAGIC;
return smsc75xx_read_eeprom(dev, ee->offset, ee->len, data);
}
static int smsc75xx_ethtool_set_eeprom(struct net_device *netdev,
struct ethtool_eeprom *ee, u8 *data)
{
struct usbnet *dev = netdev_priv(netdev);
if (ee->magic != LAN75XX_EEPROM_MAGIC) {
netdev_warn(dev->net, "EEPROM: magic value mismatch: 0x%x\n",
ee->magic);
return -EINVAL;
}
return smsc75xx_write_eeprom(dev, ee->offset, ee->len, data);
}
static void smsc75xx_ethtool_get_wol(struct net_device *net,
struct ethtool_wolinfo *wolinfo)
{
struct usbnet *dev = netdev_priv(net);
struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
wolinfo->supported = SUPPORTED_WAKE;
wolinfo->wolopts = pdata->wolopts;
}
static int smsc75xx_ethtool_set_wol(struct net_device *net,
struct ethtool_wolinfo *wolinfo)
{
struct usbnet *dev = netdev_priv(net);
struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
int ret;
if (wolinfo->wolopts & ~SUPPORTED_WAKE)
return -EINVAL;
pdata->wolopts = wolinfo->wolopts & SUPPORTED_WAKE;
ret = device_set_wakeup_enable(&dev->udev->dev, pdata->wolopts);
if (ret < 0)
netdev_warn(dev->net, "device_set_wakeup_enable error %d\n", ret);
return ret;
}
static const struct ethtool_ops smsc75xx_ethtool_ops = {
.get_link = usbnet_get_link,
.nway_reset = usbnet_nway_reset,
.get_drvinfo = usbnet_get_drvinfo,
.get_msglevel = usbnet_get_msglevel,
.set_msglevel = usbnet_set_msglevel,
.get_eeprom_len = smsc75xx_ethtool_get_eeprom_len,
.get_eeprom = smsc75xx_ethtool_get_eeprom,
.set_eeprom = smsc75xx_ethtool_set_eeprom,
.get_wol = smsc75xx_ethtool_get_wol,
.set_wol = smsc75xx_ethtool_set_wol,
.get_link_ksettings = usbnet_get_link_ksettings,
.set_link_ksettings = usbnet_set_link_ksettings,
};
static int smsc75xx_ioctl(struct net_device *netdev, struct ifreq *rq, int cmd)
{
struct usbnet *dev = netdev_priv(netdev);
if (!netif_running(netdev))
return -EINVAL;
return generic_mii_ioctl(&dev->mii, if_mii(rq), cmd, NULL);
}
static void smsc75xx_init_mac_address(struct usbnet *dev)
{
const u8 *mac_addr;
/* maybe the boot loader passed the MAC address in devicetree */
mac_addr = of_get_mac_address(dev->udev->dev.of_node);
if (!IS_ERR(mac_addr)) {
ether_addr_copy(dev->net->dev_addr, mac_addr);
return;
}
/* try reading mac address from EEPROM */
if (smsc75xx_read_eeprom(dev, EEPROM_MAC_OFFSET, ETH_ALEN,
dev->net->dev_addr) == 0) {
if (is_valid_ether_addr(dev->net->dev_addr)) {
/* eeprom values are valid so use them */
netif_dbg(dev, ifup, dev->net,
"MAC address read from EEPROM\n");
return;
}
}
/* no useful static MAC address found. generate a random one */
eth_hw_addr_random(dev->net);
netif_dbg(dev, ifup, dev->net, "MAC address set to eth_random_addr\n");
}
static int smsc75xx_set_mac_address(struct usbnet *dev)
{
u32 addr_lo = dev->net->dev_addr[0] | dev->net->dev_addr[1] << 8 |
dev->net->dev_addr[2] << 16 | dev->net->dev_addr[3] << 24;
u32 addr_hi = dev->net->dev_addr[4] | dev->net->dev_addr[5] << 8;
int ret = smsc75xx_write_reg(dev, RX_ADDRH, addr_hi);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write RX_ADDRH: %d\n", ret);
return ret;
}
ret = smsc75xx_write_reg(dev, RX_ADDRL, addr_lo);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write RX_ADDRL: %d\n", ret);
return ret;
}
addr_hi |= ADDR_FILTX_FB_VALID;
ret = smsc75xx_write_reg(dev, ADDR_FILTX, addr_hi);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write ADDR_FILTX: %d\n", ret);
return ret;
}
ret = smsc75xx_write_reg(dev, ADDR_FILTX + 4, addr_lo);
if (ret < 0)
netdev_warn(dev->net, "Failed to write ADDR_FILTX+4: %d\n", ret);
return ret;
}
static int smsc75xx_phy_initialize(struct usbnet *dev)
{
int bmcr, ret, timeout = 0;
/* Initialize MII structure */
dev->mii.dev = dev->net;
dev->mii.mdio_read = smsc75xx_mdio_read;
dev->mii.mdio_write = smsc75xx_mdio_write;
dev->mii.phy_id_mask = 0x1f;
dev->mii.reg_num_mask = 0x1f;
dev->mii.supports_gmii = 1;
dev->mii.phy_id = SMSC75XX_INTERNAL_PHY_ID;
/* reset phy and wait for reset to complete */
smsc75xx_mdio_write(dev->net, dev->mii.phy_id, MII_BMCR, BMCR_RESET);
do {
msleep(10);
bmcr = smsc75xx_mdio_read(dev->net, dev->mii.phy_id, MII_BMCR);
if (bmcr < 0) {
netdev_warn(dev->net, "Error reading MII_BMCR\n");
return bmcr;
}
timeout++;
} while ((bmcr & BMCR_RESET) && (timeout < 100));
if (timeout >= 100) {
netdev_warn(dev->net, "timeout on PHY Reset\n");
return -EIO;
}
/* phy workaround for gig link */
smsc75xx_phy_gig_workaround(dev);
smsc75xx_mdio_write(dev->net, dev->mii.phy_id, MII_ADVERTISE,
ADVERTISE_ALL | ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP |
ADVERTISE_PAUSE_ASYM);
smsc75xx_mdio_write(dev->net, dev->mii.phy_id, MII_CTRL1000,
ADVERTISE_1000FULL);
/* read and write to clear phy interrupt status */
ret = smsc75xx_mdio_read(dev->net, dev->mii.phy_id, PHY_INT_SRC);
if (ret < 0) {
netdev_warn(dev->net, "Error reading PHY_INT_SRC\n");
return ret;
}
smsc75xx_mdio_write(dev->net, dev->mii.phy_id, PHY_INT_SRC, 0xffff);
smsc75xx_mdio_write(dev->net, dev->mii.phy_id, PHY_INT_MASK,
PHY_INT_MASK_DEFAULT);
mii_nway_restart(&dev->mii);
netif_dbg(dev, ifup, dev->net, "phy initialised successfully\n");
return 0;
}
static int smsc75xx_set_rx_max_frame_length(struct usbnet *dev, int size)
{
int ret = 0;
u32 buf;
bool rxenabled;
ret = smsc75xx_read_reg(dev, MAC_RX, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read MAC_RX: %d\n", ret);
return ret;
}
rxenabled = ((buf & MAC_RX_RXEN) != 0);
if (rxenabled) {
buf &= ~MAC_RX_RXEN;
ret = smsc75xx_write_reg(dev, MAC_RX, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write MAC_RX: %d\n", ret);
return ret;
}
}
/* add 4 to size for FCS */
buf &= ~MAC_RX_MAX_SIZE;
buf |= (((size + 4) << MAC_RX_MAX_SIZE_SHIFT) & MAC_RX_MAX_SIZE);
ret = smsc75xx_write_reg(dev, MAC_RX, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write MAC_RX: %d\n", ret);
return ret;
}
if (rxenabled) {
buf |= MAC_RX_RXEN;
ret = smsc75xx_write_reg(dev, MAC_RX, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write MAC_RX: %d\n", ret);
return ret;
}
}
return 0;
}
static int smsc75xx_change_mtu(struct net_device *netdev, int new_mtu)
{
struct usbnet *dev = netdev_priv(netdev);
int ret;
ret = smsc75xx_set_rx_max_frame_length(dev, new_mtu + ETH_HLEN);
if (ret < 0) {
netdev_warn(dev->net, "Failed to set mac rx frame length\n");
return ret;
}
return usbnet_change_mtu(netdev, new_mtu);
}
/* Enable or disable Rx checksum offload engine */
static int smsc75xx_set_features(struct net_device *netdev,
netdev_features_t features)
{
struct usbnet *dev = netdev_priv(netdev);
struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
unsigned long flags;
int ret;
spin_lock_irqsave(&pdata->rfe_ctl_lock, flags);
if (features & NETIF_F_RXCSUM)
pdata->rfe_ctl |= RFE_CTL_TCPUDP_CKM | RFE_CTL_IP_CKM;
else
pdata->rfe_ctl &= ~(RFE_CTL_TCPUDP_CKM | RFE_CTL_IP_CKM);
spin_unlock_irqrestore(&pdata->rfe_ctl_lock, flags);
/* it's racing here! */
ret = smsc75xx_write_reg(dev, RFE_CTL, pdata->rfe_ctl);
if (ret < 0) {
netdev_warn(dev->net, "Error writing RFE_CTL\n");
return ret;
}
return 0;
}
static int smsc75xx_wait_ready(struct usbnet *dev, int in_pm)
{
int timeout = 0;
do {
u32 buf;
int ret;
ret = __smsc75xx_read_reg(dev, PMT_CTL, &buf, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read PMT_CTL: %d\n", ret);
return ret;
}
if (buf & PMT_CTL_DEV_RDY)
return 0;
msleep(10);
timeout++;
} while (timeout < 100);
netdev_warn(dev->net, "timeout waiting for device ready\n");
return -EIO;
}
static int smsc75xx_phy_gig_workaround(struct usbnet *dev)
{
struct mii_if_info *mii = &dev->mii;
int ret = 0, timeout = 0;
u32 buf, link_up = 0;
/* Set the phy in Gig loopback */
smsc75xx_mdio_write(dev->net, mii->phy_id, MII_BMCR, 0x4040);
/* Wait for the link up */
do {
link_up = smsc75xx_link_ok_nopm(dev);
usleep_range(10000, 20000);
timeout++;
} while ((!link_up) && (timeout < 1000));
if (timeout >= 1000) {
netdev_warn(dev->net, "Timeout waiting for PHY link up\n");
return -EIO;
}
/* phy reset */
ret = smsc75xx_read_reg(dev, PMT_CTL, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read PMT_CTL: %d\n", ret);
return ret;
}
buf |= PMT_CTL_PHY_RST;
ret = smsc75xx_write_reg(dev, PMT_CTL, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write PMT_CTL: %d\n", ret);
return ret;
}
timeout = 0;
do {
usleep_range(10000, 20000);
ret = smsc75xx_read_reg(dev, PMT_CTL, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read PMT_CTL: %d\n",
ret);
return ret;
}
timeout++;
} while ((buf & PMT_CTL_PHY_RST) && (timeout < 100));
if (timeout >= 100) {
netdev_warn(dev->net, "timeout waiting for PHY Reset\n");
return -EIO;
}
return 0;
}
static int smsc75xx_reset(struct usbnet *dev)
{
struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
u32 buf;
int ret = 0, timeout;
netif_dbg(dev, ifup, dev->net, "entering smsc75xx_reset\n");
ret = smsc75xx_wait_ready(dev, 0);
if (ret < 0) {
netdev_warn(dev->net, "device not ready in smsc75xx_reset\n");
return ret;
}
ret = smsc75xx_read_reg(dev, HW_CFG, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read HW_CFG: %d\n", ret);
return ret;
}
buf |= HW_CFG_LRST;
ret = smsc75xx_write_reg(dev, HW_CFG, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write HW_CFG: %d\n", ret);
return ret;
}
timeout = 0;
do {
msleep(10);
ret = smsc75xx_read_reg(dev, HW_CFG, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read HW_CFG: %d\n", ret);
return ret;
}
timeout++;
} while ((buf & HW_CFG_LRST) && (timeout < 100));
if (timeout >= 100) {
netdev_warn(dev->net, "timeout on completion of Lite Reset\n");
return -EIO;
}
netif_dbg(dev, ifup, dev->net, "Lite reset complete, resetting PHY\n");
ret = smsc75xx_read_reg(dev, PMT_CTL, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read PMT_CTL: %d\n", ret);
return ret;
}
buf |= PMT_CTL_PHY_RST;
ret = smsc75xx_write_reg(dev, PMT_CTL, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write PMT_CTL: %d\n", ret);
return ret;
}
timeout = 0;
do {
msleep(10);
ret = smsc75xx_read_reg(dev, PMT_CTL, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read PMT_CTL: %d\n", ret);
return ret;
}
timeout++;
} while ((buf & PMT_CTL_PHY_RST) && (timeout < 100));
if (timeout >= 100) {
netdev_warn(dev->net, "timeout waiting for PHY Reset\n");
return -EIO;
}
netif_dbg(dev, ifup, dev->net, "PHY reset complete\n");
ret = smsc75xx_set_mac_address(dev);
if (ret < 0) {
netdev_warn(dev->net, "Failed to set mac address\n");
return ret;
}
netif_dbg(dev, ifup, dev->net, "MAC Address: %pM\n",
dev->net->dev_addr);
ret = smsc75xx_read_reg(dev, HW_CFG, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read HW_CFG: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net, "Read Value from HW_CFG : 0x%08x\n",
buf);
buf |= HW_CFG_BIR;
ret = smsc75xx_write_reg(dev, HW_CFG, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write HW_CFG: %d\n", ret);
return ret;
}
ret = smsc75xx_read_reg(dev, HW_CFG, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read HW_CFG: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net, "Read Value from HW_CFG after writing HW_CFG_BIR: 0x%08x\n",
buf);
if (!turbo_mode) {
buf = 0;
dev->rx_urb_size = MAX_SINGLE_PACKET_SIZE;
} else if (dev->udev->speed == USB_SPEED_HIGH) {
buf = DEFAULT_HS_BURST_CAP_SIZE / HS_USB_PKT_SIZE;
dev->rx_urb_size = DEFAULT_HS_BURST_CAP_SIZE;
} else {
buf = DEFAULT_FS_BURST_CAP_SIZE / FS_USB_PKT_SIZE;
dev->rx_urb_size = DEFAULT_FS_BURST_CAP_SIZE;
}
netif_dbg(dev, ifup, dev->net, "rx_urb_size=%ld\n",
(ulong)dev->rx_urb_size);
ret = smsc75xx_write_reg(dev, BURST_CAP, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write BURST_CAP: %d\n", ret);
return ret;
}
ret = smsc75xx_read_reg(dev, BURST_CAP, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read BURST_CAP: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net,
"Read Value from BURST_CAP after writing: 0x%08x\n", buf);
ret = smsc75xx_write_reg(dev, BULK_IN_DLY, DEFAULT_BULK_IN_DELAY);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write BULK_IN_DLY: %d\n", ret);
return ret;
}
ret = smsc75xx_read_reg(dev, BULK_IN_DLY, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read BULK_IN_DLY: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net,
"Read Value from BULK_IN_DLY after writing: 0x%08x\n", buf);
if (turbo_mode) {
ret = smsc75xx_read_reg(dev, HW_CFG, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read HW_CFG: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net, "HW_CFG: 0x%08x\n", buf);
buf |= (HW_CFG_MEF | HW_CFG_BCE);
ret = smsc75xx_write_reg(dev, HW_CFG, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write HW_CFG: %d\n", ret);
return ret;
}
ret = smsc75xx_read_reg(dev, HW_CFG, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read HW_CFG: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net, "HW_CFG: 0x%08x\n", buf);
}
/* set FIFO sizes */
buf = (MAX_RX_FIFO_SIZE - 512) / 512;
ret = smsc75xx_write_reg(dev, FCT_RX_FIFO_END, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write FCT_RX_FIFO_END: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net, "FCT_RX_FIFO_END set to 0x%08x\n", buf);
buf = (MAX_TX_FIFO_SIZE - 512) / 512;
ret = smsc75xx_write_reg(dev, FCT_TX_FIFO_END, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write FCT_TX_FIFO_END: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net, "FCT_TX_FIFO_END set to 0x%08x\n", buf);
ret = smsc75xx_write_reg(dev, INT_STS, INT_STS_CLEAR_ALL);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write INT_STS: %d\n", ret);
return ret;
}
ret = smsc75xx_read_reg(dev, ID_REV, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read ID_REV: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net, "ID_REV = 0x%08x\n", buf);
ret = smsc75xx_read_reg(dev, E2P_CMD, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read E2P_CMD: %d\n", ret);
return ret;
}
/* only set default GPIO/LED settings if no EEPROM is detected */
if (!(buf & E2P_CMD_LOADED)) {
ret = smsc75xx_read_reg(dev, LED_GPIO_CFG, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read LED_GPIO_CFG: %d\n", ret);
return ret;
}
buf &= ~(LED_GPIO_CFG_LED2_FUN_SEL | LED_GPIO_CFG_LED10_FUN_SEL);
buf |= LED_GPIO_CFG_LEDGPIO_EN | LED_GPIO_CFG_LED2_FUN_SEL;
ret = smsc75xx_write_reg(dev, LED_GPIO_CFG, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write LED_GPIO_CFG: %d\n", ret);
return ret;
}
}
ret = smsc75xx_write_reg(dev, FLOW, 0);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write FLOW: %d\n", ret);
return ret;
}
ret = smsc75xx_write_reg(dev, FCT_FLOW, 0);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write FCT_FLOW: %d\n", ret);
return ret;
}
/* Don't need rfe_ctl_lock during initialisation */
ret = smsc75xx_read_reg(dev, RFE_CTL, &pdata->rfe_ctl);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read RFE_CTL: %d\n", ret);
return ret;
}
pdata->rfe_ctl |= RFE_CTL_AB | RFE_CTL_DPF;
ret = smsc75xx_write_reg(dev, RFE_CTL, pdata->rfe_ctl);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write RFE_CTL: %d\n", ret);
return ret;
}
ret = smsc75xx_read_reg(dev, RFE_CTL, &pdata->rfe_ctl);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read RFE_CTL: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net, "RFE_CTL set to 0x%08x\n",
pdata->rfe_ctl);
/* Enable or disable checksum offload engines */
smsc75xx_set_features(dev->net, dev->net->features);
smsc75xx_set_multicast(dev->net);
ret = smsc75xx_phy_initialize(dev);
if (ret < 0) {
netdev_warn(dev->net, "Failed to initialize PHY: %d\n", ret);
return ret;
}
ret = smsc75xx_read_reg(dev, INT_EP_CTL, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read INT_EP_CTL: %d\n", ret);
return ret;
}
/* enable PHY interrupts */
buf |= INT_ENP_PHY_INT;
ret = smsc75xx_write_reg(dev, INT_EP_CTL, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write INT_EP_CTL: %d\n", ret);
return ret;
}
/* allow mac to detect speed and duplex from phy */
ret = smsc75xx_read_reg(dev, MAC_CR, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read MAC_CR: %d\n", ret);
return ret;
}
buf |= (MAC_CR_ADD | MAC_CR_ASD);
ret = smsc75xx_write_reg(dev, MAC_CR, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write MAC_CR: %d\n", ret);
return ret;
}
ret = smsc75xx_read_reg(dev, MAC_TX, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read MAC_TX: %d\n", ret);
return ret;
}
buf |= MAC_TX_TXEN;
ret = smsc75xx_write_reg(dev, MAC_TX, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write MAC_TX: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net, "MAC_TX set to 0x%08x\n", buf);
ret = smsc75xx_read_reg(dev, FCT_TX_CTL, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read FCT_TX_CTL: %d\n", ret);
return ret;
}
buf |= FCT_TX_CTL_EN;
ret = smsc75xx_write_reg(dev, FCT_TX_CTL, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write FCT_TX_CTL: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net, "FCT_TX_CTL set to 0x%08x\n", buf);
ret = smsc75xx_set_rx_max_frame_length(dev, dev->net->mtu + ETH_HLEN);
if (ret < 0) {
netdev_warn(dev->net, "Failed to set max rx frame length\n");
return ret;
}
ret = smsc75xx_read_reg(dev, MAC_RX, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read MAC_RX: %d\n", ret);
return ret;
}
buf |= MAC_RX_RXEN;
ret = smsc75xx_write_reg(dev, MAC_RX, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write MAC_RX: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net, "MAC_RX set to 0x%08x\n", buf);
ret = smsc75xx_read_reg(dev, FCT_RX_CTL, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read FCT_RX_CTL: %d\n", ret);
return ret;
}
buf |= FCT_RX_CTL_EN;
ret = smsc75xx_write_reg(dev, FCT_RX_CTL, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write FCT_RX_CTL: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net, "FCT_RX_CTL set to 0x%08x\n", buf);
netif_dbg(dev, ifup, dev->net, "smsc75xx_reset, return 0\n");
return 0;
}
static const struct net_device_ops smsc75xx_netdev_ops = {
.ndo_open = usbnet_open,
.ndo_stop = usbnet_stop,
.ndo_start_xmit = usbnet_start_xmit,
.ndo_tx_timeout = usbnet_tx_timeout,
.ndo_get_stats64 = usbnet_get_stats64,
.ndo_change_mtu = smsc75xx_change_mtu,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = smsc75xx_ioctl,
.ndo_set_rx_mode = smsc75xx_set_multicast,
.ndo_set_features = smsc75xx_set_features,
};
static int smsc75xx_bind(struct usbnet *dev, struct usb_interface *intf)
{
struct smsc75xx_priv *pdata = NULL;
int ret;
printk(KERN_INFO SMSC_CHIPNAME " v" SMSC_DRIVER_VERSION "\n");
ret = usbnet_get_endpoints(dev, intf);
if (ret < 0) {
netdev_warn(dev->net, "usbnet_get_endpoints failed: %d\n", ret);
return ret;
}
dev->data[0] = (unsigned long)kzalloc(sizeof(struct smsc75xx_priv),
GFP_KERNEL);
pdata = (struct smsc75xx_priv *)(dev->data[0]);
if (!pdata)
return -ENOMEM;
pdata->dev = dev;
spin_lock_init(&pdata->rfe_ctl_lock);
mutex_init(&pdata->dataport_mutex);
INIT_WORK(&pdata->set_multicast, smsc75xx_deferred_multicast_write);
if (DEFAULT_TX_CSUM_ENABLE)
dev->net->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
if (DEFAULT_RX_CSUM_ENABLE)
dev->net->features |= NETIF_F_RXCSUM;
dev->net->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_RXCSUM;
ret = smsc75xx_wait_ready(dev, 0);
if (ret < 0) {
netdev_warn(dev->net, "device not ready in smsc75xx_bind\n");
return ret;
}
smsc75xx_init_mac_address(dev);
/* Init all registers */
ret = smsc75xx_reset(dev);
if (ret < 0) {
netdev_warn(dev->net, "smsc75xx_reset error %d\n", ret);
return ret;
}
dev->net->netdev_ops = &smsc75xx_netdev_ops;
dev->net->ethtool_ops = &smsc75xx_ethtool_ops;
dev->net->flags |= IFF_MULTICAST;
dev->net->hard_header_len += SMSC75XX_TX_OVERHEAD;
dev->hard_mtu = dev->net->mtu + dev->net->hard_header_len;
dev->net->max_mtu = MAX_SINGLE_PACKET_SIZE;
return 0;
}
static void smsc75xx_unbind(struct usbnet *dev, struct usb_interface *intf)
{
struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
if (pdata) {
cancel_work_sync(&pdata->set_multicast);
netif_dbg(dev, ifdown, dev->net, "free pdata\n");
kfree(pdata);
pdata = NULL;
dev->data[0] = 0;
}
}
static u16 smsc_crc(const u8 *buffer, size_t len)
{
return bitrev16(crc16(0xFFFF, buffer, len));
}
static int smsc75xx_write_wuff(struct usbnet *dev, int filter, u32 wuf_cfg,
u32 wuf_mask1)
{
int cfg_base = WUF_CFGX + filter * 4;
int mask_base = WUF_MASKX + filter * 16;
int ret;
ret = smsc75xx_write_reg(dev, cfg_base, wuf_cfg);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUF_CFGX\n");
return ret;
}
ret = smsc75xx_write_reg(dev, mask_base, wuf_mask1);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUF_MASKX\n");
return ret;
}
ret = smsc75xx_write_reg(dev, mask_base + 4, 0);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUF_MASKX\n");
return ret;
}
ret = smsc75xx_write_reg(dev, mask_base + 8, 0);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUF_MASKX\n");
return ret;
}
ret = smsc75xx_write_reg(dev, mask_base + 12, 0);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUF_MASKX\n");
return ret;
}
return 0;
}
static int smsc75xx_enter_suspend0(struct usbnet *dev)
{
struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
u32 val;
int ret;
ret = smsc75xx_read_reg_nopm(dev, PMT_CTL, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading PMT_CTL\n");
return ret;
}
val &= (~(PMT_CTL_SUS_MODE | PMT_CTL_PHY_RST));
val |= PMT_CTL_SUS_MODE_0 | PMT_CTL_WOL_EN | PMT_CTL_WUPS;
ret = smsc75xx_write_reg_nopm(dev, PMT_CTL, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing PMT_CTL\n");
return ret;
}
pdata->suspend_flags |= SUSPEND_SUSPEND0;
return 0;
}
static int smsc75xx_enter_suspend1(struct usbnet *dev)
{
struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
u32 val;
int ret;
ret = smsc75xx_read_reg_nopm(dev, PMT_CTL, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading PMT_CTL\n");
return ret;
}
val &= ~(PMT_CTL_SUS_MODE | PMT_CTL_WUPS | PMT_CTL_PHY_RST);
val |= PMT_CTL_SUS_MODE_1;
ret = smsc75xx_write_reg_nopm(dev, PMT_CTL, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing PMT_CTL\n");
return ret;
}
/* clear wol status, enable energy detection */
val &= ~PMT_CTL_WUPS;
val |= (PMT_CTL_WUPS_ED | PMT_CTL_ED_EN);
ret = smsc75xx_write_reg_nopm(dev, PMT_CTL, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing PMT_CTL\n");
return ret;
}
pdata->suspend_flags |= SUSPEND_SUSPEND1;
return 0;
}
static int smsc75xx_enter_suspend2(struct usbnet *dev)
{
struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
u32 val;
int ret;
ret = smsc75xx_read_reg_nopm(dev, PMT_CTL, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading PMT_CTL\n");
return ret;
}
val &= ~(PMT_CTL_SUS_MODE | PMT_CTL_WUPS | PMT_CTL_PHY_RST);
val |= PMT_CTL_SUS_MODE_2;
ret = smsc75xx_write_reg_nopm(dev, PMT_CTL, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing PMT_CTL\n");
return ret;
}
pdata->suspend_flags |= SUSPEND_SUSPEND2;
return 0;
}
static int smsc75xx_enter_suspend3(struct usbnet *dev)
{
struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
u32 val;
int ret;
ret = smsc75xx_read_reg_nopm(dev, FCT_RX_CTL, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading FCT_RX_CTL\n");
return ret;
}
if (val & FCT_RX_CTL_RXUSED) {
netdev_dbg(dev->net, "rx fifo not empty in autosuspend\n");
return -EBUSY;
}
ret = smsc75xx_read_reg_nopm(dev, PMT_CTL, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading PMT_CTL\n");
return ret;
}
val &= ~(PMT_CTL_SUS_MODE | PMT_CTL_WUPS | PMT_CTL_PHY_RST);
val |= PMT_CTL_SUS_MODE_3 | PMT_CTL_RES_CLR_WKP_EN;
ret = smsc75xx_write_reg_nopm(dev, PMT_CTL, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing PMT_CTL\n");
return ret;
}
/* clear wol status */
val &= ~PMT_CTL_WUPS;
val |= PMT_CTL_WUPS_WOL;
ret = smsc75xx_write_reg_nopm(dev, PMT_CTL, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing PMT_CTL\n");
return ret;
}
pdata->suspend_flags |= SUSPEND_SUSPEND3;
return 0;
}
static int smsc75xx_enable_phy_wakeup_interrupts(struct usbnet *dev, u16 mask)
{
struct mii_if_info *mii = &dev->mii;
int ret;
netdev_dbg(dev->net, "enabling PHY wakeup interrupts\n");
/* read to clear */
ret = smsc75xx_mdio_read_nopm(dev->net, mii->phy_id, PHY_INT_SRC);
if (ret < 0) {
netdev_warn(dev->net, "Error reading PHY_INT_SRC\n");
return ret;
}
/* enable interrupt source */
ret = smsc75xx_mdio_read_nopm(dev->net, mii->phy_id, PHY_INT_MASK);
if (ret < 0) {
netdev_warn(dev->net, "Error reading PHY_INT_MASK\n");
return ret;
}
ret |= mask;
smsc75xx_mdio_write_nopm(dev->net, mii->phy_id, PHY_INT_MASK, ret);
return 0;
}
static int smsc75xx_link_ok_nopm(struct usbnet *dev)
{
struct mii_if_info *mii = &dev->mii;
int ret;
/* first, a dummy read, needed to latch some MII phys */
ret = smsc75xx_mdio_read_nopm(dev->net, mii->phy_id, MII_BMSR);
if (ret < 0) {
netdev_warn(dev->net, "Error reading MII_BMSR\n");
return ret;
}
ret = smsc75xx_mdio_read_nopm(dev->net, mii->phy_id, MII_BMSR);
if (ret < 0) {
netdev_warn(dev->net, "Error reading MII_BMSR\n");
return ret;
}
return !!(ret & BMSR_LSTATUS);
}
static int smsc75xx_autosuspend(struct usbnet *dev, u32 link_up)
{
int ret;
if (!netif_running(dev->net)) {
/* interface is ifconfig down so fully power down hw */
netdev_dbg(dev->net, "autosuspend entering SUSPEND2\n");
return smsc75xx_enter_suspend2(dev);
}
if (!link_up) {
/* link is down so enter EDPD mode */
netdev_dbg(dev->net, "autosuspend entering SUSPEND1\n");
/* enable PHY wakeup events for if cable is attached */
ret = smsc75xx_enable_phy_wakeup_interrupts(dev,
PHY_INT_MASK_ANEG_COMP);
if (ret < 0) {
netdev_warn(dev->net, "error enabling PHY wakeup ints\n");
return ret;
}
netdev_info(dev->net, "entering SUSPEND1 mode\n");
return smsc75xx_enter_suspend1(dev);
}
/* enable PHY wakeup events so we remote wakeup if cable is pulled */
ret = smsc75xx_enable_phy_wakeup_interrupts(dev,
PHY_INT_MASK_LINK_DOWN);
if (ret < 0) {
netdev_warn(dev->net, "error enabling PHY wakeup ints\n");
return ret;
}
netdev_dbg(dev->net, "autosuspend entering SUSPEND3\n");
return smsc75xx_enter_suspend3(dev);
}
static int smsc75xx_suspend(struct usb_interface *intf, pm_message_t message)
{
struct usbnet *dev = usb_get_intfdata(intf);
struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
u32 val, link_up;
int ret;
ret = usbnet_suspend(intf, message);
if (ret < 0) {
netdev_warn(dev->net, "usbnet_suspend error\n");
return ret;
}
if (pdata->suspend_flags) {
netdev_warn(dev->net, "error during last resume\n");
pdata->suspend_flags = 0;
}
/* determine if link is up using only _nopm functions */
link_up = smsc75xx_link_ok_nopm(dev);
if (message.event == PM_EVENT_AUTO_SUSPEND) {
ret = smsc75xx_autosuspend(dev, link_up);
goto done;
}
/* if we get this far we're not autosuspending */
/* if no wol options set, or if link is down and we're not waking on
* PHY activity, enter lowest power SUSPEND2 mode
*/
if (!(pdata->wolopts & SUPPORTED_WAKE) ||
!(link_up || (pdata->wolopts & WAKE_PHY))) {
netdev_info(dev->net, "entering SUSPEND2 mode\n");
/* disable energy detect (link up) & wake up events */
ret = smsc75xx_read_reg_nopm(dev, WUCSR, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading WUCSR\n");
goto done;
}
val &= ~(WUCSR_MPEN | WUCSR_WUEN);
ret = smsc75xx_write_reg_nopm(dev, WUCSR, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUCSR\n");
goto done;
}
ret = smsc75xx_read_reg_nopm(dev, PMT_CTL, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading PMT_CTL\n");
goto done;
}
val &= ~(PMT_CTL_ED_EN | PMT_CTL_WOL_EN);
ret = smsc75xx_write_reg_nopm(dev, PMT_CTL, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing PMT_CTL\n");
goto done;
}
ret = smsc75xx_enter_suspend2(dev);
goto done;
}
if (pdata->wolopts & WAKE_PHY) {
ret = smsc75xx_enable_phy_wakeup_interrupts(dev,
(PHY_INT_MASK_ANEG_COMP | PHY_INT_MASK_LINK_DOWN));
if (ret < 0) {
netdev_warn(dev->net, "error enabling PHY wakeup ints\n");
goto done;
}
/* if link is down then configure EDPD and enter SUSPEND1,
* otherwise enter SUSPEND0 below
*/
if (!link_up) {
struct mii_if_info *mii = &dev->mii;
netdev_info(dev->net, "entering SUSPEND1 mode\n");
/* enable energy detect power-down mode */
ret = smsc75xx_mdio_read_nopm(dev->net, mii->phy_id,
PHY_MODE_CTRL_STS);
if (ret < 0) {
netdev_warn(dev->net, "Error reading PHY_MODE_CTRL_STS\n");
goto done;
}
ret |= MODE_CTRL_STS_EDPWRDOWN;
smsc75xx_mdio_write_nopm(dev->net, mii->phy_id,
PHY_MODE_CTRL_STS, ret);
/* enter SUSPEND1 mode */
ret = smsc75xx_enter_suspend1(dev);
goto done;
}
}
if (pdata->wolopts & (WAKE_MCAST | WAKE_ARP)) {
int i, filter = 0;
/* disable all filters */
for (i = 0; i < WUF_NUM; i++) {
ret = smsc75xx_write_reg_nopm(dev, WUF_CFGX + i * 4, 0);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUF_CFGX\n");
goto done;
}
}
if (pdata->wolopts & WAKE_MCAST) {
const u8 mcast[] = {0x01, 0x00, 0x5E};
netdev_info(dev->net, "enabling multicast detection\n");
val = WUF_CFGX_EN | WUF_CFGX_ATYPE_MULTICAST
| smsc_crc(mcast, 3);
ret = smsc75xx_write_wuff(dev, filter++, val, 0x0007);
if (ret < 0) {
netdev_warn(dev->net, "Error writing wakeup filter\n");
goto done;
}
}
if (pdata->wolopts & WAKE_ARP) {
const u8 arp[] = {0x08, 0x06};
netdev_info(dev->net, "enabling ARP detection\n");
val = WUF_CFGX_EN | WUF_CFGX_ATYPE_ALL | (0x0C << 16)
| smsc_crc(arp, 2);
ret = smsc75xx_write_wuff(dev, filter++, val, 0x0003);
if (ret < 0) {
netdev_warn(dev->net, "Error writing wakeup filter\n");
goto done;
}
}
/* clear any pending pattern match packet status */
ret = smsc75xx_read_reg_nopm(dev, WUCSR, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading WUCSR\n");
goto done;
}
val |= WUCSR_WUFR;
ret = smsc75xx_write_reg_nopm(dev, WUCSR, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUCSR\n");
goto done;
}
netdev_info(dev->net, "enabling packet match detection\n");
ret = smsc75xx_read_reg_nopm(dev, WUCSR, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading WUCSR\n");
goto done;
}
val |= WUCSR_WUEN;
ret = smsc75xx_write_reg_nopm(dev, WUCSR, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUCSR\n");
goto done;
}
} else {
netdev_info(dev->net, "disabling packet match detection\n");
ret = smsc75xx_read_reg_nopm(dev, WUCSR, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading WUCSR\n");
goto done;
}
val &= ~WUCSR_WUEN;
ret = smsc75xx_write_reg_nopm(dev, WUCSR, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUCSR\n");
goto done;
}
}
/* disable magic, bcast & unicast wakeup sources */
ret = smsc75xx_read_reg_nopm(dev, WUCSR, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading WUCSR\n");
goto done;
}
val &= ~(WUCSR_MPEN | WUCSR_BCST_EN | WUCSR_PFDA_EN);
ret = smsc75xx_write_reg_nopm(dev, WUCSR, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUCSR\n");
goto done;
}
if (pdata->wolopts & WAKE_PHY) {
netdev_info(dev->net, "enabling PHY wakeup\n");
ret = smsc75xx_read_reg_nopm(dev, PMT_CTL, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading PMT_CTL\n");
goto done;
}
/* clear wol status, enable energy detection */
val &= ~PMT_CTL_WUPS;
val |= (PMT_CTL_WUPS_ED | PMT_CTL_ED_EN);
ret = smsc75xx_write_reg_nopm(dev, PMT_CTL, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing PMT_CTL\n");
goto done;
}
}
if (pdata->wolopts & WAKE_MAGIC) {
netdev_info(dev->net, "enabling magic packet wakeup\n");
ret = smsc75xx_read_reg_nopm(dev, WUCSR, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading WUCSR\n");
goto done;
}
/* clear any pending magic packet status */
val |= WUCSR_MPR | WUCSR_MPEN;
ret = smsc75xx_write_reg_nopm(dev, WUCSR, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUCSR\n");
goto done;
}
}
if (pdata->wolopts & WAKE_BCAST) {
netdev_info(dev->net, "enabling broadcast detection\n");
ret = smsc75xx_read_reg_nopm(dev, WUCSR, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading WUCSR\n");
goto done;
}
val |= WUCSR_BCAST_FR | WUCSR_BCST_EN;
ret = smsc75xx_write_reg_nopm(dev, WUCSR, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUCSR\n");
goto done;
}
}
if (pdata->wolopts & WAKE_UCAST) {
netdev_info(dev->net, "enabling unicast detection\n");
ret = smsc75xx_read_reg_nopm(dev, WUCSR, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading WUCSR\n");
goto done;
}
val |= WUCSR_WUFR | WUCSR_PFDA_EN;
ret = smsc75xx_write_reg_nopm(dev, WUCSR, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUCSR\n");
goto done;
}
}
/* enable receiver to enable frame reception */
ret = smsc75xx_read_reg_nopm(dev, MAC_RX, &val);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read MAC_RX: %d\n", ret);
goto done;
}
val |= MAC_RX_RXEN;
ret = smsc75xx_write_reg_nopm(dev, MAC_RX, val);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write MAC_RX: %d\n", ret);
goto done;
}
/* some wol options are enabled, so enter SUSPEND0 */
netdev_info(dev->net, "entering SUSPEND0 mode\n");
ret = smsc75xx_enter_suspend0(dev);
done:
/*
* TODO: resume() might need to handle the suspend failure
* in system sleep
*/
if (ret && PMSG_IS_AUTO(message))
usbnet_resume(intf);
return ret;
}
static int smsc75xx_resume(struct usb_interface *intf)
{
struct usbnet *dev = usb_get_intfdata(intf);
struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
u8 suspend_flags = pdata->suspend_flags;
int ret;
u32 val;
netdev_dbg(dev->net, "resume suspend_flags=0x%02x\n", suspend_flags);
/* do this first to ensure it's cleared even in error case */
pdata->suspend_flags = 0;
if (suspend_flags & SUSPEND_ALLMODES) {
/* Disable wakeup sources */
ret = smsc75xx_read_reg_nopm(dev, WUCSR, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading WUCSR\n");
return ret;
}
val &= ~(WUCSR_WUEN | WUCSR_MPEN | WUCSR_PFDA_EN
| WUCSR_BCST_EN);
ret = smsc75xx_write_reg_nopm(dev, WUCSR, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUCSR\n");
return ret;
}
/* clear wake-up status */
ret = smsc75xx_read_reg_nopm(dev, PMT_CTL, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading PMT_CTL\n");
return ret;
}
val &= ~PMT_CTL_WOL_EN;
val |= PMT_CTL_WUPS;
ret = smsc75xx_write_reg_nopm(dev, PMT_CTL, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing PMT_CTL\n");
return ret;
}
}
if (suspend_flags & SUSPEND_SUSPEND2) {
netdev_info(dev->net, "resuming from SUSPEND2\n");
ret = smsc75xx_read_reg_nopm(dev, PMT_CTL, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading PMT_CTL\n");
return ret;
}
val |= PMT_CTL_PHY_PWRUP;
ret = smsc75xx_write_reg_nopm(dev, PMT_CTL, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing PMT_CTL\n");
return ret;
}
}
ret = smsc75xx_wait_ready(dev, 1);
if (ret < 0) {
netdev_warn(dev->net, "device not ready in smsc75xx_resume\n");
return ret;
}
return usbnet_resume(intf);
}
static void smsc75xx_rx_csum_offload(struct usbnet *dev, struct sk_buff *skb,
u32 rx_cmd_a, u32 rx_cmd_b)
{
if (!(dev->net->features & NETIF_F_RXCSUM) ||
unlikely(rx_cmd_a & RX_CMD_A_LCSM)) {
skb->ip_summed = CHECKSUM_NONE;
} else {
skb->csum = ntohs((u16)(rx_cmd_b >> RX_CMD_B_CSUM_SHIFT));
skb->ip_summed = CHECKSUM_COMPLETE;
}
}
static int smsc75xx_rx_fixup(struct usbnet *dev, struct sk_buff *skb)
{
/* This check is no longer done by usbnet */
if (skb->len < dev->net->hard_header_len)
return 0;
while (skb->len > 0) {
u32 rx_cmd_a, rx_cmd_b, align_count, size;
struct sk_buff *ax_skb;
unsigned char *packet;
memcpy(&rx_cmd_a, skb->data, sizeof(rx_cmd_a));
le32_to_cpus(&rx_cmd_a);
skb_pull(skb, 4);
memcpy(&rx_cmd_b, skb->data, sizeof(rx_cmd_b));
le32_to_cpus(&rx_cmd_b);
skb_pull(skb, 4 + RXW_PADDING);
packet = skb->data;
/* get the packet length */
size = (rx_cmd_a & RX_CMD_A_LEN) - RXW_PADDING;
align_count = (4 - ((size + RXW_PADDING) % 4)) % 4;
if (unlikely(rx_cmd_a & RX_CMD_A_RED)) {
netif_dbg(dev, rx_err, dev->net,
"Error rx_cmd_a=0x%08x\n", rx_cmd_a);
dev->net->stats.rx_errors++;
dev->net->stats.rx_dropped++;
if (rx_cmd_a & RX_CMD_A_FCS)
dev->net->stats.rx_crc_errors++;
else if (rx_cmd_a & (RX_CMD_A_LONG | RX_CMD_A_RUNT))
dev->net->stats.rx_frame_errors++;
} else {
/* MAX_SINGLE_PACKET_SIZE + 4(CRC) + 2(COE) + 4(Vlan) */
if (unlikely(size > (MAX_SINGLE_PACKET_SIZE + ETH_HLEN + 12))) {
netif_dbg(dev, rx_err, dev->net,
"size err rx_cmd_a=0x%08x\n",
rx_cmd_a);
return 0;
}
/* last frame in this batch */
if (skb->len == size) {
smsc75xx_rx_csum_offload(dev, skb, rx_cmd_a,
rx_cmd_b);
skb_trim(skb, skb->len - 4); /* remove fcs */
skb->truesize = size + sizeof(struct sk_buff);
return 1;
}
ax_skb = skb_clone(skb, GFP_ATOMIC);
if (unlikely(!ax_skb)) {
netdev_warn(dev->net, "Error allocating skb\n");
return 0;
}
ax_skb->len = size;
ax_skb->data = packet;
skb_set_tail_pointer(ax_skb, size);
smsc75xx_rx_csum_offload(dev, ax_skb, rx_cmd_a,
rx_cmd_b);
skb_trim(ax_skb, ax_skb->len - 4); /* remove fcs */
ax_skb->truesize = size + sizeof(struct sk_buff);
usbnet_skb_return(dev, ax_skb);
}
skb_pull(skb, size);
/* padding bytes before the next frame starts */
if (skb->len)
skb_pull(skb, align_count);
}
return 1;
}
static struct sk_buff *smsc75xx_tx_fixup(struct usbnet *dev,
struct sk_buff *skb, gfp_t flags)
{
u32 tx_cmd_a, tx_cmd_b;
if (skb_cow_head(skb, SMSC75XX_TX_OVERHEAD)) {
dev_kfree_skb_any(skb);
return NULL;
}
tx_cmd_a = (u32)(skb->len & TX_CMD_A_LEN) | TX_CMD_A_FCS;
if (skb->ip_summed == CHECKSUM_PARTIAL)
tx_cmd_a |= TX_CMD_A_IPE | TX_CMD_A_TPE;
if (skb_is_gso(skb)) {
u16 mss = max(skb_shinfo(skb)->gso_size, TX_MSS_MIN);
tx_cmd_b = (mss << TX_CMD_B_MSS_SHIFT) & TX_CMD_B_MSS;
tx_cmd_a |= TX_CMD_A_LSO;
} else {
tx_cmd_b = 0;
}
skb_push(skb, 4);
cpu_to_le32s(&tx_cmd_b);
memcpy(skb->data, &tx_cmd_b, 4);
skb_push(skb, 4);
cpu_to_le32s(&tx_cmd_a);
memcpy(skb->data, &tx_cmd_a, 4);
return skb;
}
static int smsc75xx_manage_power(struct usbnet *dev, int on)
{
dev->intf->needs_remote_wakeup = on;
return 0;
}
static const struct driver_info smsc75xx_info = {
.description = "smsc75xx USB 2.0 Gigabit Ethernet",
.bind = smsc75xx_bind,
.unbind = smsc75xx_unbind,
.link_reset = smsc75xx_link_reset,
.reset = smsc75xx_reset,
.rx_fixup = smsc75xx_rx_fixup,
.tx_fixup = smsc75xx_tx_fixup,
.status = smsc75xx_status,
.manage_power = smsc75xx_manage_power,
.flags = FLAG_ETHER | FLAG_SEND_ZLP | FLAG_LINK_INTR,
};
static const struct usb_device_id products[] = {
{
/* SMSC7500 USB Gigabit Ethernet Device */
USB_DEVICE(USB_VENDOR_ID_SMSC, USB_PRODUCT_ID_LAN7500),
.driver_info = (unsigned long) &smsc75xx_info,
},
{
/* SMSC7500 USB Gigabit Ethernet Device */
USB_DEVICE(USB_VENDOR_ID_SMSC, USB_PRODUCT_ID_LAN7505),
.driver_info = (unsigned long) &smsc75xx_info,
},
{ }, /* END */
};
MODULE_DEVICE_TABLE(usb, products);
static struct usb_driver smsc75xx_driver = {
.name = SMSC_CHIPNAME,
.id_table = products,
.probe = usbnet_probe,
.suspend = smsc75xx_suspend,
.resume = smsc75xx_resume,
.reset_resume = smsc75xx_resume,
.disconnect = usbnet_disconnect,
.disable_hub_initiated_lpm = 1,
.supports_autosuspend = 1,
};
module_usb_driver(smsc75xx_driver);
MODULE_AUTHOR("Nancy Lin");
MODULE_AUTHOR("Steve Glendinning <steve.glendinning@shawell.net>");
MODULE_DESCRIPTION("SMSC75XX USB 2.0 Gigabit Ethernet Devices");
MODULE_LICENSE("GPL");
You can’t perform that action at this time.