Skip to content

Latest commit

 

History

History
30 lines (20 loc) · 787 Bytes

2003-48.md

File metadata and controls

30 lines (20 loc) · 787 Bytes
course course_year question_number tags title year
Numerical Analysis
IB
48
IB
2003
Numerical Analysis
3.I.6B
2003

Given $(n+1)$ distinct points $x_{0}, x_{1}, \ldots, x_{n}$, let

$$\ell_{i}(x)=\prod_{\substack{k=0 \ k \neq i}}^{n} \frac{x-x_{k}}{x_{i}-x_{k}}$$

be the fundamental Lagrange polynomials of degree $n$, let

$$\omega(x)=\prod_{i=0}^{n}\left(x-x_{i}\right)$$

and let $p$ be any polynomial of degree $\leq n$.

(a) Prove that $\sum_{i=0}^{n} p\left(x_{i}\right) \ell_{i}(x) \equiv p(x)$.

(b) Hence or otherwise derive the formula

$$\frac{p(x)}{\omega(x)}=\sum_{i=0}^{n} \frac{A_{i}}{x-x_{i}}, \quad A_{i}=\frac{p\left(x_{i}\right)}{\omega^{\prime}\left(x_{i}\right)}$$

which is the decomposition of $p(x) / \omega(x)$ into partial fractions.