Skip to content

Latest commit

 

History

History
32 lines (21 loc) · 1.06 KB

2003-61.md

File metadata and controls

32 lines (21 loc) · 1.06 KB
course course_year question_number tags title year
Quantum Mechanics
IB
61
IB
2003
Quantum Mechanics
1.II.18A
2003

What is the significance of the expectation value

$$\langle Q\rangle=\int \psi^{*}(x) Q \psi(x) d x$$

of an observable $Q$ in the normalized state $\psi(x)$ ? Let $Q$ and $P$ be two observables. By considering the norm of $(Q+i \lambda P) \psi$ for real values of $\lambda$, show that

$$\left\langle Q^{2}\right\rangle\left\langle P^{2}\right\rangle \geqslant \frac{1}{4}|\langle[Q, P]\rangle|^{2}$$

The uncertainty $\Delta Q$ of $Q$ in the state $\psi(x)$ is defined as

$$(\Delta Q)^{2}=\left\langle(Q-\langle Q\rangle)^{2}\right\rangle .$$

Deduce the generalized uncertainty relation,

$$\Delta Q \Delta P \geqslant \frac{1}{2}|\langle[Q, P]\rangle| .$$

A particle of mass $m$ moves in one dimension under the influence of the potential $\frac{1}{2} m \omega^{2} x^{2}$. By considering the commutator $[x, p]$, show that the expectation value of the Hamiltonian satisfies

$$\langle H\rangle \geqslant \frac{1}{2} \hbar \omega .$$