Skip to content

Latest commit

 

History

History
29 lines (22 loc) · 833 Bytes

2005-3.md

File metadata and controls

29 lines (22 loc) · 833 Bytes
course course_year question_number tags title year
Linear Algebra
IB
3
IB
2005
Linear Algebra
2.II.10C
2005

(i) Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix with entries in C. Define the determinant of $A$, the cofactor of each $a_{i j}$, and the adjugate matrix $\operatorname{adj}(A)$. Assuming the expansion of the determinant of a matrix in terms of its cofactors, prove that

$$\operatorname{adj}(A) A=\operatorname{det}(A) I_{n}$$

where $I_{n}$ is the $n \times n$ identity matrix.

(ii) Let

$$A=\left(\begin{array}{llll} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{array}\right)$$

Show the eigenvalues of $A$ are $\pm 1, \pm i$, where $i^{2}=-1$, and determine the diagonal matrix to which $A$ is similar. For each eigenvalue, determine a non-zero eigenvector.