Skip to content

Latest commit

 

History

History
43 lines (28 loc) · 2.21 KB

2008-52.md

File metadata and controls

43 lines (28 loc) · 2.21 KB
course course_year question_number tags title year
Electromagnetism
IB
52
IB
2008
Electromagnetism
3.II.17B
2008

(i) From Maxwell's equations in vacuum,

$$\begin{array}{ll} \nabla \cdot \mathbf{E}=0 & \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \cdot \mathbf{B}=0 & \nabla \times \mathbf{B}=\mu_{0} \epsilon_{0} \frac{\partial \mathbf{E}}{\partial t} \end{array}$$

obtain the wave equation for the electric field E. [You may find the following identity useful: $\left.\nabla \times(\nabla \times \mathbf{A})=\nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A} .\right]$

(ii) If the electric and magnetic fields of a monochromatic plane wave in vacuum are

$$\mathbf{E}(z, t)=\mathbf{E}{0} \mathrm{e}^{i(k z-\omega t)} \text { and } \mathbf{B}(z, t)=\mathbf{B}{0} \mathrm{e}^{i(k z-\omega t)}$$

show that the corresponding electromagnetic waves are transverse (that is, both fields have no component in the direction of propagation).

(iii) Use Faraday's law for these fields to show that

$$\mathbf{B}{0}=\frac{k}{\omega}\left(\hat{\mathbf{e}}{z} \times \mathbf{E}_{0}\right)$$

(iv) Explain with symmetry arguments how these results generalise to

$$\mathbf{E}(\mathbf{r}, t)=E_{0} \mathrm{e}^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)} \hat{\mathbf{n}} \quad \text { and } \quad \mathbf{B}(\mathbf{r}, t)=\frac{1}{c} E_{0} \mathrm{e}^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}(\hat{\mathbf{k}} \times \hat{\mathbf{n}})$$

where $\hat{\mathbf{n}}$ is the polarisation vector, i.e., the unit vector perpendicular to the direction of motion and along the direction of the electric field, and $\hat{\mathbf{k}}$ is the unit vector in the direction of propagation of the wave.

(v) Using Maxwell's equations in vacuum prove that:

$$\oint_{\mathcal{A}}\left(1 / \mu_{0}\right)(\mathbf{E} \times \mathbf{B}) \cdot d \mathcal{A}=-\frac{\partial}{\partial t} \int_{\mathcal{V}}\left(\frac{\epsilon_{0} E^{2}}{2}+\frac{B^{2}}{2 \mu_{0}}\right) d V$$

where $\mathcal{V}$ is the closed volume and $\mathcal{A}$ is the bounding surface. Comment on the differing time dependencies of the left-hand-side of (1) for the case of (a) linearly-polarized and (b) circularly-polarized monochromatic plane waves.