Skip to content

Latest commit

 

History

History
33 lines (21 loc) · 1.07 KB

2009-53.md

File metadata and controls

33 lines (21 loc) · 1.07 KB
course course_year question_number tags title year
Methods
IB
53
IB
2009
Methods
Paper 4, Section II, A
2009

Suppose that $y_{1}(x)$ and $y_{2}(x)$ are linearly independent solutions of

$$\frac{d^{2} y}{d x^{2}}+b(x) \frac{d y}{d x}+c(x) y=0$$

with $y_{1}(0)=0$ and $y_{2}(1)=0$. Show that the Green's function $G(x, \xi)$ for the interval $0 \leqslant x, \xi \leqslant 1$ and with $G(0, \xi)=G(1, \xi)=0$ can be written in the form

$$G(x, \xi)= \begin{cases}y_{1}(x) y_{2}(\xi) / W(\xi) ; & 0<x<\xi \ y_{2}(x) y_{1}(\xi) / W(\xi) ; & \xi<x<1\end{cases}$$

where $W(x)=W\left[y_{1}(x), y_{2}(x)\right]$ is the Wronskian of $y_{1}(x)$ and $y_{2}(x)$.

Use this result to find the Green's function $G(x, \xi)$ that satisfies

$$\frac{d^{2} G}{d x^{2}}+3 \frac{d G}{d x}+2 G=\delta(x-\xi)$$

in the interval $0 \leqslant x, \xi \leqslant 1$ and with $G(0, \xi)=G(1, \xi)=0$. Hence obtain an integral expression for the solution of

$$\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y= \begin{cases}0 ; & 0<x<x_{0} \ 2 ; & x_{0}<x<1\end{cases}$$

for the case $x&lt;x_{0}$.