Skip to content

Latest commit

 

History

History
37 lines (23 loc) · 1.3 KB

2012-11.md

File metadata and controls

37 lines (23 loc) · 1.3 KB
course course_year question_number tags title year
Complex Analysis or Complex Methods
IB
11
IB
2012
Complex Analysis or Complex Methods
Paper 1, Section II, 13A
2012

Using Cauchy's integral theorem, write down the value of a holomorphic function $f(z)$ where $|z|<1$ in terms of a contour integral around the unit circle, $\zeta=e^{i \theta} .$

By considering the point $1 / \bar{z}$, or otherwise, show that

$$f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\zeta) \frac{1-|z|^{2}}{|\zeta-z|^{2}} \mathrm{~d} \theta$$

By setting $z=r e^{i \alpha}$, show that for any harmonic function $u(r, \alpha)$,

$$u(r, \alpha)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u(1, \theta) \frac{1-r^{2}}{1-2 r \cos (\alpha-\theta)+r^{2}} \mathrm{~d} \theta$$

if $r<1$.

Assuming that the function $v(r, \alpha)$, which is the conjugate harmonic function to $u(r, \alpha)$, can be written as

$$v(r, \alpha)=v(0)+\frac{1}{\pi} \int_{0}^{2 \pi} u(1, \theta) \frac{r \sin (\alpha-\theta)}{1-2 r \cos (\alpha-\theta)+r^{2}} \mathrm{~d} \theta$$

deduce that

$$f(z)=i v(0)+\frac{1}{2 \pi} \int_{0}^{2 \pi} u(1, \theta) \frac{\zeta+z}{\zeta-z} \mathrm{~d} \theta$$

[You may use the fact that on the unit circle, $\zeta=1 / \bar{\zeta}$, and hence

$$\left.\frac{\zeta}{\zeta-1 / \bar{z}}=-\frac{\bar{z}}{\bar{\zeta}-\bar{z}} \cdot\right]$$