Skip to content

Latest commit

 

History

History
35 lines (24 loc) · 774 Bytes

2012-13.md

File metadata and controls

35 lines (24 loc) · 774 Bytes
course course_year question_number tags title year
Complex Methods
IB
13
IB
2012
Complex Methods
Paper 4, Section II, A
2012

State the convolution theorem for Fourier transforms.

The function $\phi(x, y)$ satisfies

$$\nabla^{2} \phi=0$$

on the half-plane $y \geqslant 0$, subject to the boundary conditions

$$\begin{gathered} \phi \rightarrow 0 \text { as } y \rightarrow \infty \text { for all } x \\ \phi(x, 0)= \begin{cases}1, & |x| \leqslant 1 \\ 0, & |x|>1\end{cases} \end{gathered}$$

Using Fourier transforms, show that

$$\phi(x, y)=\frac{y}{\pi} \int_{-1}^{1} \frac{1}{y^{2}+(x-t)^{2}} \mathrm{~d} t$$

and hence that

$$\phi(x, y)=\frac{1}{\pi}\left[\tan ^{-1}\left(\frac{1-x}{y}\right)+\tan ^{-1}\left(\frac{1+x}{y}\right)\right]$$