Skip to content

Latest commit

 

History

History
25 lines (17 loc) · 966 Bytes

2012-71.md

File metadata and controls

25 lines (17 loc) · 966 Bytes
course course_year question_number tags title year
Quantum Mechanics
IB
71
IB
2012
Quantum Mechanics
Paper 2, Section II, C
2012

Consider a quantum mechanical particle in a one-dimensional potential $V(x)$, for which $V(x)=V(-x)$. Prove that when the energy eigenvalue $E$ is non-degenerate, the energy eigenfunction $\chi(x)$ has definite parity.

Now assume the particle is in the double potential well

$$V(x)= \begin{cases}U, & 0 \leqslant|x| \leqslant l_{1} \ 0, & l_{1}<|x| \leqslant l_{2} \ \infty, & l_{2}<|x|\end{cases}$$

where $0&lt;l_{1}&lt;l_{2}$ and $0&lt;E&lt;U$ (U being large and positive). Obtain general expressions for the even parity energy eigenfunctions $\chi^{+}(x)$ in terms of trigonometric and hyperbolic functions. Show that

$$-\tan \left[k\left(l_{2}-l_{1}\right)\right]=\frac{k}{\kappa} \operatorname{coth}\left(\kappa l_{1}\right)$$

where $k^{2}=\frac{2 m E}{\hbar^{2}}$ and $\kappa^{2}=\frac{2 m(U-E)}{\hbar^{2}}$.