Skip to content

Latest commit

 

History

History
29 lines (19 loc) · 1.47 KB

2013-18.md

File metadata and controls

29 lines (19 loc) · 1.47 KB
course course_year question_number tags title year
Electromagnetism
IB
18
IB
2013
Electromagnetism
Paper 2, Section II, D
2013

Starting with the expression

$$\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right) d V^{\prime}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}$$

for the magnetic vector potential at the point $r$ due to a current distribution of density $\mathbf{J}(\mathbf{r})$, obtain the Biot-Savart law for the magnetic field due to a current $I$ flowing in a simple loop $C$ :

$$\mathbf{B}(\mathbf{r})=-\frac{\mu_{0} I}{4 \pi} \oint_{C} \frac{d \mathbf{r}^{\prime} \times\left(\mathbf{r}^{\prime}-\mathbf{r}\right)}{\left|\mathbf{r}^{\prime}-\mathbf{r}\right|^{3}} \quad(\mathbf{r} \notin C) .$$

Verify by direct differentiation that this satisfies $\boldsymbol{\nabla} \times \mathbf{B}=\mathbf{0}$. You may use without proof the identity $\boldsymbol{\nabla} \times(\mathbf{a} \times \mathbf{v})=\mathbf{a}(\boldsymbol{\nabla} \cdot \mathbf{v})-(\mathbf{a} \cdot \boldsymbol{\nabla}) \mathbf{v}$, where $\mathbf{a}$ is a constant vector and $\mathbf{v}$ is a vector field.

Given that $C$ is planar, and is described in cylindrical polar coordinates by $z=0$, $r=f(\theta)$, show that the magnetic field at the origin is

$$\widehat{\mathbf{z}} \frac{\mu_{0} I}{4 \pi} \oint \frac{d \theta}{f(\theta)}$$

If $C$ is the ellipse $r(1-e \cos \theta)=\ell$, find the magnetic field at the focus due to a current $I$.