Skip to content

Latest commit

 

History

History
27 lines (18 loc) · 1.39 KB

2013-5.md

File metadata and controls

27 lines (18 loc) · 1.39 KB
course course_year question_number tags title year
Analysis II
IB
5
IB
2013
Analysis II
Paper 3, Section II, F
2013

For each of the following statements, provide a proof or justify a counterexample.

  1. The norms $|x|{1}=\sum{i=1}^{n}\left|x_{i}\right|$ and $|x|_{\infty}=\max {1 \leqslant i \leqslant n}\left|x{i}\right|$ on $\mathbb{R}^{n}$ are Lipschitz equivalent.

  2. The norms $|x|{1}=\sum{i=1}^{\infty}\left|x_{i}\right|$ and $|x|{\infty}=\max {i}\left|x{i}\right|$ on the vector space of sequences $\left(x{i}\right){i \geqslant 1}$ with $\sum\left|x{i}\right|<\infty$ are Lipschitz equivalent.

  3. Given a linear function $\phi: V \rightarrow W$ between normed real vector spaces, there is some $N$ for which $|\phi(x)| \leqslant N$ for every $x \in V$ with $|x| \leqslant 1$.

  4. Given a linear function $\phi: V \rightarrow W$ between normed real vector spaces for which there is some $N$ for which $|\phi(x)| \leqslant N$ for every $x \in V$ with $|x| \leqslant 1$, then $\phi$ is continuous.

  5. The uniform norm $|f|=\sup _{x \in \mathbb{R}}|f(x)|$ is complete on the vector space of continuous real-valued functions $f$ on $\mathbb{R}$ for which $f(x)=0$ for $|x|$ sufficiently large.

  6. The uniform norm $|f|=\sup _{x \in \mathbb{R}}|f(x)|$ is complete on the vector space of continuous real-valued functions $f$ on $\mathbb{R}$ which are bounded.