Skip to content

Latest commit

 

History

History
23 lines (16 loc) · 807 Bytes

2013-56.md

File metadata and controls

23 lines (16 loc) · 807 Bytes
course course_year question_number tags title year
Metric and Topological Spaces
IB
56
IB
2013
Metric and Topological Spaces
Paper 1, Section II, G
2013

Consider the sphere $S^{2}=\left{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right}$, a subset of $\mathbb{R}^{3}$, as a subspace of $\mathbb{R}^{3}$ with the Euclidean metric.

(i) Show that $S^{2}$ is compact and Hausdorff as a topological space.

(ii) Let $X=S^{2} / \sim$ be the quotient set with respect to the equivalence relation identifying the antipodes, i.e.

$$(x, y, z) \sim\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \Longleftrightarrow\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=(x, y, z) \text { or }(-x,-y,-z)$$

Show that $X$ is compact and Hausdorff with respect to the quotient topology.