Skip to content

Latest commit

 

History

History
50 lines (31 loc) · 2.45 KB

2014-52.md

File metadata and controls

50 lines (31 loc) · 2.45 KB
course course_year question_number tags title year
Methods
IB
52
IB
2014
Methods
Paper 2, Section II, 16D
2014

The Fourier transform $\tilde{f}$ of a function $f$ is defined as

$$\tilde{f}(k)=\int_{-\infty}^{\infty} f(x) e^{-i k x} d x, \quad \text { so that } f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \tilde{f}(k) e^{i k x} d k$$

A Green's function $G\left(t, t^{\prime}, x, x^{\prime}\right)$ for the diffusion equation in one spatial dimension satisfies

$$\frac{\partial G}{\partial t}-D \frac{\partial^{2} G}{\partial x^{2}}=\delta\left(t-t^{\prime}\right) \delta\left(x-x^{\prime}\right)$$

(a) By applying a Fourier transform, show that the Fourier transform $\tilde{G}$ of this Green's function and the Green's function $G$ are

$$\begin{aligned} \tilde{G}\left(t, t^{\prime}, k, x^{\prime}\right) &=H\left(t-t^{\prime}\right) e^{-i k x^{\prime}} e^{-D k^{2}\left(t-t^{\prime}\right)} \\ G\left(t, t^{\prime}, x, x^{\prime}\right) &=\frac{H\left(t-t^{\prime}\right)}{\sqrt{4 \pi D\left(t-t^{\prime}\right)}} e^{-\frac{\left(x-x^{\prime}\right)^{2}}{4 D\left(t-t^{\prime}\right)}} \end{aligned}$$

where $H$ is the Heaviside function. [Hint: The Fourier transform $\tilde{F}$ of a Gaussian $F(x)=\frac{1}{\sqrt{4 \pi a}} e^{-\frac{x^{2}}{4 a}}, a=\mathrm{const}$, is given by $\left.\tilde{F}(k)=e^{-a k^{2}} .\right]$

(b) The analogous result for the Green's function for the diffusion equation in two spatial dimensions is

$$G\left(t, t^{\prime}, x, x^{\prime}, y, y^{\prime}\right)=\frac{H\left(t-t^{\prime}\right)}{4 \pi D\left(t-t^{\prime}\right)} e^{-\frac{1}{4 D\left(t-t^{\prime}\right)}\left[\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}\right]}$$

Use this Green's function to construct a solution for $t \geqslant 0$ to the diffusion equation

$$\frac{\partial \Psi}{\partial t}-D\left(\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial^{2} \Psi}{\partial y^{2}}\right)=p(t) \delta(x) \delta(y)$$

with the initial condition $\Psi(0, x, y)=0$.

Now set

$$p(t)= \begin{cases}p_{0}=\mathrm{const} & \text { for } \quad 0 \leqslant t \leqslant t_{0} \ 0 & \text { for } \quad t>t_{0}\end{cases}$$

Find the solution $\Psi(t, x, y)$ for $t>t_{0}$ in terms of the exponential integral defined by

$$E i(-\eta)=-\int_{\eta}^{\infty} \frac{e^{-\lambda}}{\lambda} d \lambda$$

Use the approximation $E i(-\eta) \approx \ln \eta+C$, valid for $\eta \ll 1$, to simplify this solution $\Psi(t, x, y)$. Here $C \approx 0.577$ is Euler's constant.