Skip to content

Latest commit

 

History

History
28 lines (20 loc) · 697 Bytes

2015-2.md

File metadata and controls

28 lines (20 loc) · 697 Bytes
course course_year question_number tags title year
Analysis II
IB
2
IB
2015
Analysis II
Paper 2, Section I, G
2015

Show that the map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$f(x, y, z)=\left(x-y-z, x^{2}+y^{2}+z^{2}, x y z\right)$$

is differentiable everywhere and find its derivative.

Stating accurately any theorem that you require, show that $f$ has a differentiable local inverse at a point $(x, y, z)$ if and only if

$$(x+y)(x+z)(y-z) \neq 0 .$$

$$\begin{aligned} & p(f)=\sup |f|, \quad q(f)=\sup \left(|f|+\left|f^{\prime}\right|\right), \\ & r(f)=\sup \left|f^{\prime}\right|, \quad s(f)=\left|\int_{-1}^{1} f(x) d x\right| \end{aligned}$$