Skip to content

Latest commit

 

History

History
23 lines (16 loc) · 873 Bytes

2015-3.md

File metadata and controls

23 lines (16 loc) · 873 Bytes
course course_year question_number tags title year
Analysis II
IB
3
IB
2015
Analysis II
Paper 1, Section II, G
2015

Define what it means for a sequence of functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ to converge uniformly on $[0,1]$ to a function $f$.

Let $f_{n}(x)=n^{p} x e^{-n^{q} x}$, where $p, q$ are positive constants. Determine all the values of $(p, q)$ for which $f_{n}(x)$ converges pointwise on $[0,1]$. Determine all the values of $(p, q)$ for which $f_{n}(x)$ converges uniformly on $[0,1]$.

Let now $f_{n}(x)=e^{-n x^{2}}$. Determine whether or not $f_{n}$ converges uniformly on $[0,1]$.

Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function. Show that the sequence $x^{n} f(x)$ is uniformly convergent on $[0,1]$ if and only if $f(1)=0$.

[If you use any theorems about uniform convergence, you should prove these.]