Skip to content

Latest commit

 

History

History
31 lines (20 loc) · 1.31 KB

2016-42.md

File metadata and controls

31 lines (20 loc) · 1.31 KB
course course_year question_number tags title year
Linear Algebra
IB
42
IB
2016
Linear Algebra
Paper 2, Section II, F
2016

Let $M_{n, n}$ denote the vector space over a field $F=\mathbb{R}$ or $\mathbb{C}$ of $n \times n$ matrices with entries in $F$. Given $B \in M_{n, n}$, consider the two linear transformations $R_{B}, L_{B}: M_{n, n} \rightarrow$ $M_{n, n}$ defined by

$$L_{B}(A)=B A, \quad R_{B}(A)=A B$$

(a) Show that $\operatorname{det} L_{B}=(\operatorname{det} B)^{n}$.

[For parts (b) and (c), you may assume the analogous result $\operatorname{det} R_{B}=(\operatorname{det} B)^{n}$ without proof.]

(b) Now let $F=\mathbb{C}$. For $B \in M_{n, n}$, write $B^{}$ for the conjugate transpose of $B$, i.e., $B^{}:=\bar{B}^{T}$. For $B \in M_{n, n}$, define the linear transformation $M_{B}: M_{n, n} \rightarrow M_{n, n}$ by

$$M_{B}(A)=B A B^{*}$$

Show that $\operatorname{det} M_{B}=|\operatorname{det} B|^{2 n}$.

(c) Again let $F=\mathbb{C}$. Let $W \subseteq M_{n, n}$ be the set of Hermitian matrices. [Note that $W$ is not a vector space over $\mathbb{C}$ but only over $\mathbb{R} .]$ For $B \in M_{n, n}$ and $A \in W$, define $T_{B}(A)=B A B^{*}$. Show that $T_{B}$ is an $\mathbb{R}$-linear operator on $W$, and show that as such,

$$\operatorname{det} T_{B}=|\operatorname{det} B|^{2 n}$$