Skip to content

Latest commit

 

History

History
27 lines (18 loc) · 1.08 KB

2021-10.md

File metadata and controls

27 lines (18 loc) · 1.08 KB
course course_year question_number tags title year
Complex Analysis or Complex Methods
IB
10
IB
2021
Complex Analysis or Complex Methods
Paper 2, Section II, B
2021

(a) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function and let $a>0, b>0$ be constants. Show that if

$$|f(z)| \leqslant a|z|^{n / 2}+b$$

for all $z \in \mathbb{C}$, where $n$ is a positive odd integer, then $f$ must be a polynomial with degree not exceeding $\lfloor n / 2\rfloor$ (closest integer part rounding down).

Does there exist a function $f$, analytic in $\mathbb{C} \backslash{0}$, such that $|f(z)| \geqslant 1 / \sqrt{|z|}$ for all nonzero $z ?$ Justify your answer.

(b) State Liouville's Theorem and use it to show the following.

(i) If $u$ is a positive harmonic function on $\mathbb{R}^{2}$, then $u$ is a constant function.

(ii) Let $L={z \mid z=a x+b, x \in \mathbb{R}}$ be a line in $\mathbb{C}$ where $a, b \in \mathbb{C}, a \neq 0$. If $f: \mathbb{C} \rightarrow \mathbb{C}$ is an entire function such that $f(\mathbb{C}) \cap L=\emptyset$, then $f$ is a constant function.