Skip to content

Latest commit

 

History

History
44 lines (29 loc) · 1.94 KB

2021-17.md

File metadata and controls

44 lines (29 loc) · 1.94 KB
course course_year question_number tags title year
Electromagnetism
IB
17
IB
2021
Electromagnetism
Paper 3, Section II, 15D
2021

(a) The energy density stored in the electric and magnetic fields $\mathbf{E}$ and $\mathbf{B}$ is given by

$$w=\frac{\epsilon_{0}}{2} \mathbf{E} \cdot \mathbf{E}+\frac{1}{2 \mu_{0}} \mathbf{B} \cdot \mathbf{B}$$

Show that, in regions where no electric current flows,

$$\frac{\partial w}{\partial t}+\boldsymbol{\nabla} \cdot \mathbf{S}=0$$

for some vector field $\mathbf{S}$ that you should determine.

(b) The coordinates $x^{\prime \mu}=\left(c t^{\prime}, \mathbf{x}^{\prime}\right)$ in an inertial frame $\mathcal{S}^{\prime}$ are related to the coordinates $x^{\mu}=(c t, \mathbf{x})$ in an inertial frame $\mathcal{S}$ by a Lorentz transformation $x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu}$, where

$$\Lambda_{\nu}^{\mu}=\left(\begin{array}{cccc} \gamma & -\gamma v / c & 0 & 0 \\ -\gamma v / c & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

with $\gamma=\left(1-v^{2} / c^{2}\right)^{-1 / 2}$. Here $v$ is the relative velocity of $\mathcal{S}^{\prime}$ with respect to $\mathcal{S}$ in the x-direction.

In frame $\mathcal{S}^{\prime}$, there is a static electric field $\mathbf{E}^{\prime}\left(\mathbf{x}^{\prime}\right)$ with $\partial \mathbf{E}^{\prime} / \partial t^{\prime}=0$, and no magnetic field. Calculate the electric field $\mathbf{E}$ and magnetic field $\mathbf{B}$ in frame $\mathcal{S}$. Show that the energy density in frame $\mathcal{S}$ is given in terms of the components of $\mathbf{E}^{\prime}$ by

$$w=\frac{\epsilon_{0}}{2}\left[E_{x}^{\prime 2}+\left(\frac{c^{2}+v^{2}}{c^{2}-v^{2}}\right)\left(E_{y}^{\prime 2}+E_{z}^{\prime 2}\right)\right]$$

Use the fact that $\partial w / \partial t^{\prime}=0$ to show that

$$\frac{\partial w}{\partial t}+\nabla \cdot\left(w v \mathbf{e}_{x}\right)=0$$

where $\mathbf{e}_{x}$ is the unit vector in the $x$-direction.